Advertisement

Adversarial Scheduling Analysis of Game-Theoretic Models of Norm Diffusion

  • Gabriel Istrate
  • Madhav V. Marathe
  • S. S. Ravi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5028)

Abstract

In [IMR01] we advocated the investigation of robustness of results in the theory of learning in games under adversarial scheduling models. We provide evidence that such an analysis is feasible and can lead to nontrivial results by investigating, in an adversarial scheduling setting, Peyton Young’s model of diffusion of norms [You98]. In particular, our main result incorporates contagion into Peyton Young’s model.

Keywords

evolutionary games adversarial scheduling Markov chains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AE96]
    Axtell, R., Epstein, J.: Growing Artificial Societies: Social Science from the Bottom Up. The MIT Press (1996)Google Scholar
  2. [Blu01]
    Blume, L.: Population games. In: Durlauf, S., Peyton Young, H. (eds.) Social Dynamics: Economic Learning and Social Evolution. MIT Press (2001)Google Scholar
  3. [BEM05]
    Barrett, C., Eubank, S., Marathe, M.: Modeling and Simulation of Large Biological, Information and Socio-Technical Systems: An Interaction Based Approach. In: Goldin, D., Smolka, S., Wegner, P. (eds.) Interactive Computation: The New Paradigm. Springer, Heidelberg ( to appear, 2005)Google Scholar
  4. [BH+06]
    Barrett, C., Hunt III, H., Marathe, M., Ravi, S.S., Rosenkrantz, D., Stearns, R.: Dichotomy Theorems for Reachability Problems in Sequential Dynamical Systems. Journal of Computer and System Sciences 72, 1317–1345 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [BH+07]
    Barrett, C., Hunt III, H., Marathe, M., Ravi, S.S., Rosenkrantz, D., Stearns, R., Thakur, M.: Computational Aspects of Analyzing Social Network Dynamics. In: Proc. International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India (January 2007)Google Scholar
  6. [ECC+04]
    Epstein, J.M., Cummings, D., Chakravarty, S., Singa, R., Burke, D.: Toward a Containment Strategy for Smallpox Bioterror. An Individual-Based Computational Approach. Brookings Institution Press (2004)Google Scholar
  7. [Eps07]
    Epstein, J.: Generative Social Science: Studies in Agent-based Computational Modeling. Princeton University Press (2007)Google Scholar
  8. [EG+04]
    Eubank, S., Guclu, H., Anil Kumar, V.S., Marathe, M., Srinivasan, A., Toroczkai, Z., Wang, N.: Modeling Disease Outbreaks in Realistic Urban Social Networks. Nature 429, 180–184 (2004)CrossRefGoogle Scholar
  9. [FC+06]
    Ferguson, N.L., Cummings, D., Fraser, C., Cajka, J., Cooley, P., Burke, D.: Strategies for mitigating an influenza pandemic. Nature (April 2006)Google Scholar
  10. [GT05]
    Gilbert, N., Troizch, K.: Simulation for social scientists, 2nd edn. Open University Press (2005)Google Scholar
  11. [IMR01]
    Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial models in evolutionary game dynamics. In: Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA 2001) (2001) (journal version in preparation)Google Scholar
  12. [IMR08]
    Istrate, G., Marathe, M.V., Ravi, S.S.: Adversarial scheduling analysis of game-theoretic models of norm diffusion. Technical report 0803.2495, arXiv.org (2008)Google Scholar
  13. [NBB99]
    Nagel, K., Beckmann, R., Barrett, C.: TRANSIMS for transportation planning. In: Bar-Yam, Y., Minai, A. (eds.) Proceedings of the Second International Conference on Complex Systems, Westview Press (1999)Google Scholar
  14. [Roo04]
    Van Rooy, R.: Signalling games select Horn strategies. Linguistics and Philosophy 27, 423–497 (2004)CrossRefGoogle Scholar
  15. [Wei95]
    Weibull, J.: Evolutionary Game Theory. M.I.T. Press (1995)Google Scholar
  16. [WZ96]
    Winkler, P., Zuckerman, D.: Multiple cover time. Random Structures and Algorithms 9(4), 403–411 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [You93]
    Young, H.P.: The evolution of conventions. Econometrica 61(1), 57–84 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [You98]
    Young, H.P.: Individual Strategy and Social Structure: an Evolutionary Theory of Institutions. Princeton University Press (1998)Google Scholar
  19. [You03]
    Young, H.P.: The diffusion of innovations in social networks. In: Blume, L., Durlauf, S. (eds.) The Economy as a Complex System III, Oxford University Press (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gabriel Istrate
    • 1
  • Madhav V. Marathe
    • 2
  • S. S. Ravi
    • 3
  1. 1.e-Austria InstituteTimişoaraRomania
  2. 2.Network Dynamics and Simulation Science Laboratory, and Dept. of Computer Science Virginia Tech. 
  3. 3.Computer Science Dept.S.U.N.Y. at AlbanyAlbanyU.S.A.

Personalised recommendations