Hybrid Functional Interpretations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5028)


We show how different functional interpretations can be combined via a multi-modal linear logic. A concrete hybrid of Kreisel’s modified realizability and Gödel’s Dialectica is presented, and several small applications are given. We also discuss how the hybrid interpretation relates to variants of Dialectica and modified realizability with non-computational quantifiers.


Functional interpretations modified realizability Dialectica interpretation linear logic program extraction from proofs uniform quantifiers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oliva, P.: Unifying functional interpretations. Notre Dame Journal of Formal Logic 47(2), 263–290 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Kreisel, G.: Interpretation of analysis by means of constructive functionals of finite types. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 101–128. North Holland, Amsterdam (1959)Google Scholar
  3. 3.
    Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Girard, J.Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Oliva, P.: Modified realizability interpretation of classical linear logic. In: Proc. of the 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007). IEEE Press (2007)Google Scholar
  6. 6.
    Oliva, P.: An analysis of Gödel’s Dialectica interpretation via linear logic. Dialectica (2008),
  7. 7.
    Howard, W.A.: Hereditarily majorizable functionals of finite type. In: Troelstra, A.S. (ed.) WG 1988. Lecture Notes in Mathematics, vol. 344, pp. 454–461. Springer, Berlin (1973)Google Scholar
  8. 8.
    Danos, V., Joinet, J.B., Schellinx, H.: The structure of exponentials: Uncovering the dynamics of linear logic proofs. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 159–171. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  9. 9.
    Girard, J.Y.: Towards a geometry of interaction. Contemporary Mathematics 92 (1989)Google Scholar
  10. 10.
    Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analysing proofs in mathematics. Proceedings of the Steklov Institute of Mathematics 242, 136–164 (2003)MathSciNetGoogle Scholar
  11. 11.
    Berger, U.: Uniform Heyting Arithmetic. Annals Pure Applied Logic 133, 125–148 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hernest, M.D.: Optimized programs from (non-constructive) proofs by the light (monotone) Dialectica interpretation. PhD Thesis, École Polytechnique and Universität München (2006),
  13. 13.
    Oliva, P.: Computational interpretations of classical linear logic. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 285–296. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Berger, U., Schwichtenberg, H., Buchholz, W.: Refined program extraction from classical proofs. Annals of Pure and Applied Logic 114, 3–25 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Hernest, M.D.: Light Dialectica program extraction from a classical Fibonacci proof. Electronic Notes in Theoretical Computer Science 171(3), 43–53 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Informatics InstituteUniversity of InnsbruckAustria
  2. 2.Department of Computer ScienceQueen Mary, University of London 

Personalised recommendations