Advertisement

Program Schemes with Deep Pushdown Storage

  • Argimiro Arratia
  • Iain A. Stewart
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5028)

Abstract

Inspired by recent work of Meduna on deep pushdown automata, we consider the computational power of a class of basic program schemes, \(\mbox{NPSDS}_s\), based around assignments, while-loops and non- deterministic guessing but with access to a deep pushdown stack which, apart from having the usual push and pop instructions, also has deep-push instructions which allow elements to be pushed to stack locations deep within the stack. We syntactically define sub-classes of \(\mbox{NPSDS}_s\) by restricting the occurrences of pops, pushes and deep-pushes and capture the complexity classes NP and PSPACE. Furthermore, we show that all problems accepted by program schemes of \(\mbox{NPSDS}_s\) are in EXPTIME.

Keywords

Turing Machine Hamiltonian Path Successor Relation Current Path Program Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arratia-Quesada, A., Stewart, I.A.: On the power of deep pushdown stacks, http://www.dur.ac.uk/i.a.stewart/Abstracts/DeepPushdownStacks.htm
  2. 2.
    Arratia-Quesada, A.A., Chauhan, S.R., Stewart, I.A.: Hierarchies in classes of program schemes. Journal of Logic and Computation 9, 915–957 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Constable, R., Gries, D.: On classes of program schemata. SIAM Journal of Computing 1, 66–118 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cook, S.A.: Characterizations of pushdown machines in terms of time-bounded computers. Journal of the Association for Computing Machinery 18, 4–18 (1971)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dahlhaus, E.: Reduction to NP-complete problems by interpretations. In: Börger, E., Hasenjaeger, G., Rödding, D. (eds.) Proc. of Logic and Machines: Decision Problems and Complexity. LNCS, vol. 171, pp. 357–365. Springer, Heidelberg (1984)Google Scholar
  6. 6.
    Friedman, H.: Algorithmic procedures, generalized Turing algorithms and elementary recursion theory. In: Gandy, R.O., Yates, C.M.E. (eds.) Logic Colloquium, pp. 361–390. North-Holland, Amsterdam (1971)Google Scholar
  7. 7.
    Harel, D., Peleg, D.: On static logics, dynamic logics, and complexity classes. Information and Control 60, 86–102 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jones, N.D., Muchnik, S.S.: Even simple programs are hard to analyze. Journal of Association for Computing Machinery 24, 338–350 (1977)zbMATHGoogle Scholar
  9. 9.
    Kasai, T.: An hierarchy between context-free and context-sensitive languages. Journal of Computer and System Sciences 4, 492–508 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Meduna, A.: Deep pushdown automata. Acta Informatica 42, 541–552 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Paterson, M., Hewitt, N.: Comparative schematology. In: Record of Project MAC Conf. on Concurrent Syst. and Parallel Comput., pp. 119–128. ACM Press, New York (1970)Google Scholar
  12. 12.
    Spector, L., Klein, J., Keijzer, M.: The Push3 execution stack and the evolution of control. In: Beyer, H.-G., O’Reilly, U.-M. (eds.) Proc. of Genetic and Evolutionary Computation Conference, pp. 1689–1696. ACM Press, New York (2005)CrossRefGoogle Scholar
  13. 13.
    Stewart, I.A.: Using the Hamiltonian path operator to capture NP. Journal of Computer and System Sciences 45, 127–151 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Stewart, I.A.: Program schemes, arrays, Lindström quantifiers and zero-one laws. Theoretical Computer Science 275, 283–310 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Stewart, I.A.: Using program schemes to logically capture polynomial-time on certain classes of structures. London Mathematical Society Journal of Computation and Mathematics 6, 40–67 (2003)zbMATHGoogle Scholar
  16. 16.
    Stewart, I.A.: Logical and complexity-theoretic aspects of models of computation with restricted access to arrays. In: Cooper, S.B., Kent, T.F., Löwe, B., Sorbi, A. (eds.) Proc. of Computation and Logic in the Real World, Third Conference on Computability in Europe (CiE 2007), pp. 324–331 (2007)Google Scholar
  17. 17.
    Tiuryn, J., Urzyczyn, P.: Some relationships between logics of programs and complexity theory. Theoretical Computer Science 60, 83–108 (1988)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Argimiro Arratia
    • 1
  • Iain A. Stewart
    • 2
  1. 1.Dpto. de Matemática Aplicada, Facultad de CienciasUniversidad de ValladolidValladolidSpain
  2. 2.Department of Computer ScienceDurham University, Science LabsDurhamU.K.

Personalised recommendations