P Automata: Membrane Systems as Acceptors

  • Erzsébet Csuhaj-Varjú
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5028)


The concept of a membrane system (a P system) was introduced by Gheorghe Păun in 1998 [9,10], with the aim of formulating a computational device abstracted from the architecture and the functioning of the living cell. Since that time, the theory of membrane systems has proved to be a successful area in bio-inspired computing.

The main ingredient of a P system is a hierarchically embedded structure of membranes. Each membrane encloses a region that contains objects and might also contain other membranes. The outmost membrane is called the skin membrane. There are rules associated to the regions describing the evolution of the objects which represent chemical substances. The evolution rules correspond to chemical reactions, and the evolution of the system to a computation. The main features of P systems include the transformation (rewriting) of objects, their moving among the different regions (communication), and possibly other additional capabilities such as, for example, a dynamically changing membrane structure, or special constraints added to the sets of rules. At any moment in time, the membrane system can be described by its configuration (its state) which consists of the actual membrane structure and the contents of the regions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Csuhaj-Varjú, E.: P automata. In: Mauri, G., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 19–35. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the Computational Complexity of P Automata. In: Ferretti, C., et al. (eds.) Preliminary Proceedings of DNA10. Tenth International Meeting on DNA Computing, Milan, June 7-10, 2004, pp. 97–106. University of Milano-Bicocca, Italy (2004)Google Scholar
  3. 3.
    Csuhaj-Varjú, E., Ibarra, O.H., Vaszil, G.: On the Complexity of P Automata. Natural Computing 5(2), 109–126 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Csuhaj-Varjú, E., Vaszil, G.: P automata. In: Păun, G., Zandron, C. (eds.) Pre-Proceedings of the Workshop on Membrane Computing, Curtea de Arges, Romania, August 19-23, 2002, pp. 117–192 (2002); MolCoNet-IST-2001-32008Google Scholar
  5. 5.
    Csuhaj-Varjú, E., Vaszil, G.: P Automata or Purely Communicating Accepting P systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Freund, R., Martín-Vide, C., Obtułowicz, A., Păun, G.: On Three Classes of Automata-like P Systems. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 292–303. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Freund, R., Oswald, M.: A Short Note on Analysing P Systems. Bulletin of the EATCS 78, 231–236 (2002)MathSciNetGoogle Scholar
  8. 8.
    Oswald, M.: P Automata. PhD dissertation, Technical University of Vienna (2003)Google Scholar
  9. 9.
    Păun, G.: Computing with membranes. TUCS Report 208, Turku Centre for Computer Science (1998)Google Scholar
  10. 10.
    Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  12. 12.
    The P systems web page at

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Erzsébet Csuhaj-Varjú
    • 1
  1. 1.Computer and Automation Research InstituteHungarian Academy of SciencesBudapestHungary

Personalised recommendations