Advertisement

The Role of Classical Computation in Measurement-Based Quantum Computation

  • Dan Browne
  • Janet Anders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5028)

Abstract

Measurement-based quantum computation (MBQC) is an important model of quantum computation, which has delivered both new insights and practical advantages. In measurement-based quantum computation, more specifically the “one-way model” of computation, the computation proceeds in the following way. A large number of quantum bits (qubits) are prepared in a special entangled state called a cluster state. The qubits are then measured in a particular basis and particular order, the measurements are adaptive, some bases depending on the outcome of previous measurements. A classical control computer processes the measurement results in order to feed forward the bases for future measurements. In this paper we focus on the role played by the classical computer in this model and investigate some of its properties.

Keywords

Quantum computation computational models measurement-based quantum computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raussendorf, R., Briegel, H.: Phys. Rev. Lett.  86, 5188 (2001)Google Scholar
  2. 2.
    Raussendorf, R., Briegel, H.: Quantum. Inform. Compu. 2, 443 (2002)Google Scholar
  3. 3.
    Raussendorf, R., Browne, D., Briegel, H.: Phys. Rev. A 68, 022312 (2003)Google Scholar
  4. 4.
    Browne, D.E., Briegel, H.J.: One-way Quantum Computation - a tutorial introduction. In: Bruss, D., Leuchs, G. (eds.). Lectures on Quantum Information (2006)Google Scholar
  5. 5.
    Nielsen, M.: Rep. Math. Phys. 57, 147 (2006)Google Scholar
  6. 6.
    Jozsa, R.: Measurement-based quantum computation. In: Angelakis, D.G. (ed.) Quantum Information Processing - From Theory to Experiment (2006)Google Scholar
  7. 7.
    van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Phys. Rev. Lett.  97, 150504 (2006)Google Scholar
  8. 8.
    van den Nest, M., Dür, W., Miyake, A., Briegel, H.J.: New. J Phys.  9, 204 (2007)Google Scholar
  9. 9.
    Gross, D., Eisert, J., Schuch, N., Perez-Garcia, D.: Phys. Rev. A.  76 (2007)Google Scholar
  10. 10.
    Gross, D., Eisert, J.: Phys. Rev. Lett. 98, 220503 (2007)Google Scholar
  11. 11.
    Aaronson, S., Kuperberg, G.: The Complexity Zoo (accessed 10th March 2008), http://qwiki.stanford.edu/wiki/Complexity_Zoo
  12. 12.
    Damm, C.: Inform. Process. Lett. 36, 247 (1990)Google Scholar
  13. 13.
    Aaronson, S., Gottesman, D.: Phys. Rev. A 70, 052328 (2004)Google Scholar
  14. 14.
    Danos, V., Kashefi, E.: Phys. Rev. A 74, 052310 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dan Browne
    • 1
  • Janet Anders
    • 1
  1. 1.Department of Physics and AstronomyUniversity College LondonLondon 

Personalised recommendations