Skip to main content

Iterative procedure for retrieval of spectral aerosol optical thickness and surface reflectance from satellite data using fast radiative transfer code and its application to MERIS measurements

  • Chapter
Book cover Satellite Aerosol Remote Sensing over Land

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

The retrieval of aerosol characteristics over land from satellite data has been a challenge up to now. Currently, several well known techniques for retrieving aerosol optical thickness (AOT) have been developed for satellite instruments including MODIS (Kaufman et al., 1997; Remer et al., 2005), MERIS (Santer et al., 1999, 2000), POLDER (Deuze et al, 2001), and MISR (Martonchik et al., 2002). While each technique has its own merits, the accuracy of AOT retrieval still needs further clarification and improvement. From this point of view the inter-comparison and verification of these techniques undertaken recently (Kokhanovsky et al., 2007) is of a great importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chaikovskaya L.I., I.L. Katsev, A.S. Prikhach, and E.P. Zege, 1999: Fast code to compute polarized radiation transfer in the atmosphere-ocean and atmosphere-earth systems, IGARSS’99, IEEE, International Geoscience and Remote Sensing Symposium, Hamburg, Germany, Congress Centrum Hamburg Remote Sensing of the System Earth a Challenge for the 21th Century Proceedings, CD-ROM.

    Google Scholar 

  • Chandrasekhar S., 1960: Radiative Transfer, Oxford University Press, London.

    Google Scholar 

  • Coulson K.L., J.V. Dave, and Z. Sekera, 1960: Tables Related to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering, University of California Press, Berkeley CA.

    Google Scholar 

  • Deuze, J.L., F.M. Breon, and C. Devaux et al., 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. Journal of Geophysical Research, 106, 4913–4926.

    Article  Google Scholar 

  • Holben, B.N. et al., 2001: An emerging ground-based aerosol climatology: aerosol optical depth from AERONET, Journal of Geophysical Research, 106, 12067–12097.

    Article  Google Scholar 

  • Ivanov A.P., 1975: Physical Principles of Hydrooptics, Nauka i Tekhnica, Minsk.

    Google Scholar 

  • Kaufman Y.J., D. Tanre, H.R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B.M. Herman, M.D. King, and P.M. Teillet, 1997: Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, Journal of Geophysical Research, 102, 16815–16830.

    Article  Google Scholar 

  • Kneizys F.X., L.W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Robertson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery, and S.A. Clough, 1996: ‘The MODTRAN 2_3 report and LOWTRAN 7 model,’ (Ontar Corporation, North Andover, M).

    Google Scholar 

  • Kokhanovsky A.A., 2004: Reflection of light from nonabsorbing semi-infinite cloudy media. A simple approximation, Journal of Quantitative Spectroscopy and Radiative Transfer, 85, 25–33.

    Article  Google Scholar 

  • Kokhanovsky, A.A. et al., 2007: Aerosol remote sensing over land: a comparison of satellite retrievals using different algorithms and instruments, Atmos. Res., 85, 372–294.

    Article  Google Scholar 

  • Kokhanovsky, A.A., W. von Hoyningen-Huene, H. Bovensmann, and J.P. Burrows, 2004: The determination of the atmospheric optical thickness overWestern Europe using SeaWiFS imagery, IEEE Trans-ac. Geosci. Rent. Sens., 42, 824–832.

    Article  Google Scholar 

  • Lenoble J., 1985: Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures, A. Deepak Publishing, Hampton, VA.

    Google Scholar 

  • WMO International Association for Meteorology and Atmospheric Physics Radiation Commission, „A preliminary cloudless standard atmosphere for radiation computation,“ World Climate Program, WCP-112 WMOyTD-#24 ~ World Meteorological Organisation, Geneva, 1986.

    Google Scholar 

  • Martonchik, J.V, D.J. Diner, K.A. Crean, and M.A. Bull, 2002: Regional aerosol retrieval results from MISR. IEEE Trans. Geosci. Remote Sens., 40, 1520–1531.

    Article  Google Scholar 

  • Remer L.A., Y.J. Kaufman, D. Tanré, S. Mattoo, D.A. Chu, J.V Martins, R.R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote, and B.N. Holben, 2005: The MODIS Aerosol Algorithm, Products, and Validation, J Atm. Sci, 62, 947–973.

    Article  Google Scholar 

  • Rozanov, A., V. Rozanov, M. Buchwitz, A. Kokhanovsky, and J.P. Burrows, 2005: ‘SCIATRAN 2.0 — A new radiative transfer model for geo-physical applications in the 175-2400 nm spectral region’, Adv. Space Res., 36, 1015–1019.

    Article  Google Scholar 

  • Santer, R. et al., 2000: Atmospheric product over land for MERIS level 2. MERIS Algorithm Theoretical Basis Document, ATBD 2.15, ESA.

    Google Scholar 

  • Santer, R., V. Carrere, P. Dubuisson, and J.C. Roger, 1999: Atmospheric corrections over land for MERIS. Int. J. Remote Sens., 20, 1819–1840.

    Article  Google Scholar 

  • Tynes H., G.W. Kattawar, E.P. Zege, I.L. Katsev, A.S. Prikhach, and L.I. Chaikovskaya, 2001: Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations, Appl. Opt., 40, 400–412.

    Article  Google Scholar 

  • von Hoyningen-Huene W., M. Freitag, and J.B. Burrows, 2003: Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance, Journal of Geophysical Research, 108(D9), 4260, doi:10.1029/2001JD002018.

    Article  Google Scholar 

  • Zege E.P. and L.I. Chaikovskaya, 1996: Newapproach to the polarized radiative transfer problem, Journal of Quantitative Spectroscopy and Radiative Transfer, 55, 19–31.

    Article  Google Scholar 

  • Zege E.P., A.P. Ivanov, and I.L. Katsev, 1991: Image Transfer through a Scattering Medium, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Zege E.P., I.L. Katsev, and I.N. Polonsky, 1993: Multicomponent approach to light propagation in clouds and mists, Appl. Opt., 32, 2803–2812.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

Katsev, I.L., Prikhach, A.S., Zege, E.P., Ivanov, A.P., Kokhanovsky, A.A. (2009). Iterative procedure for retrieval of spectral aerosol optical thickness and surface reflectance from satellite data using fast radiative transfer code and its application to MERIS measurements. In: Kokhanovsky, A.A., de Leeuw, G. (eds) Satellite Aerosol Remote Sensing over Land. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69397-0_4

Download citation

Publish with us

Policies and ethics