Skip to main content

Reaction-diffusion Processes in Scale-free Networks

  • Chapter
Handbook of Large-Scale Random Networks

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 18))

Abstract

In this chapter we provide a review of the main results recently obtained in the modeling of binary fermionic reaction-diffusion processes on scale-free networks. We show how to derive rate equations within the heterogeneous mean-field formalism, and how information can be obtained from them both for finite networks in the diffusion-limited regime and in the infinite network size lime. By means of extensive numerical simulations, we check the mean field predictions and explore other aspects of the reaction-diffusion dynamics, such as density correlations and the effects of the minimum degree or a tree-like topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Albert and A. L. Barabási, Rev. Mod. Phys., 74 (2002), 47.

    Article  Google Scholar 

  2. S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks: From biological nets to the Internet and WWW (Oxford University Press, Oxford, 2003).

    MATH  Google Scholar 

  3. M. E. J. Newman, SIAM Review, 45 (2003), 167.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Bollobás, Modern Graph Theory (Springer-Verlag, New York, 1998).

    MATH  Google Scholar 

  5. D. J. Watts and S. H. Strogatz, Nature, 393 (1998), 440.

    Article  Google Scholar 

  6. A. L. Barabási and R. Albert, Science, 286 (1999), 509.

    Article  MathSciNet  Google Scholar 

  7. S. Dorogovtsev, A. Goltsev and J. Mendes, Critical phenomena in complex networks (2007), E-print arXiv:0705.0010v2 [cond-mat.stat-mech].

    Google Scholar 

  8. R. Pastor-Satorras and A. Vespignani, Evolution and structure of the Internet: A statistical physics approach (Cambridge University Press, Cambridge, 2004).

    Book  Google Scholar 

  9. R. M. Anderson and R. M. May, Infectious diseases in humans (Oxford University Press, Oxford, 1992).

    Google Scholar 

  10. R. Cohen, K. Erez, D. ben Avraham and S. Havlin, Phys. Rev. Lett., 86 (2001), 3682.

    Article  Google Scholar 

  11. D. S. Callaway, M. E. J. Newman, S. H. Strogatz and D. J. Watts, Phys. Rev. Lett., 85 (2000), 5468.

    Article  Google Scholar 

  12. R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett., 86 (2001), 3200.

    Article  Google Scholar 

  13. A. L. Lloyd and R. M. May, Science, 292 (2001), 1316.

    Article  Google Scholar 

  14. N. G. van Kampen, Stochastic processes in chemistry and physics (North Holland, Amsterdam, 1981).

    MATH  Google Scholar 

  15. J. Marro and R. Dickman, Nonequilibrium phase transitions in lattice models (Cambridge University Press, Cambridge, 1999).

    Book  Google Scholar 

  16. O. Diekmann and J. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation (John Wiley & Sons, New York, 2000).

    Google Scholar 

  17. J. D. Murray, Mathematical biology, 2nd edn. (Springer Verlag, Berlin, 1993).

    MATH  Google Scholar 

  18. M. Doi, J. Phys. A: Math. Gen., 9 (1976), 1465.

    Article  Google Scholar 

  19. M. Doi, J. Phys. A: Math. Gen., 9 (1976), 1479.

    Article  Google Scholar 

  20. L. Peliti, J. Phys. I, 46 (1985), 1469.

    MathSciNet  Google Scholar 

  21. D. C. Mattis and M. L. Glasser, Rev. Mod. Phys., 70 (1998), 979.

    Article  Google Scholar 

  22. M. Le Bellac, Quantum and statistical field theory (Clarendon Press, Oxford, 1991).

    Google Scholar 

  23. A. A. Ovchinnikov and Y. B. Zeldovich, Chem. Phys., 28 (1978), 215.

    Article  Google Scholar 

  24. B. P. Lee, J. Phys. A: Math. Gen., 27 (1994), 2633.

    Article  Google Scholar 

  25. L. K. Gallos, P. Argyrakis, Phys. Rev. Lett., 92 (2004), 138301.

    Article  Google Scholar 

  26. M. Catanzaro, M. Boguñá and R. Pastor-Satorras, Phys. Rev. E, 71 (2005), 056104.

    Article  Google Scholar 

  27. S. Weber and M. Porto, Phys. Rev. E, 74(4) (2006), 046108.

    Article  Google Scholar 

  28. M. A. Serrano, M. Boguñá, R. Pastor-Satorras and A. Vespignani, in: Large scale structure and dynamics of complex networks: From information technology to finance and natural sciences, ed. by G. Caldarelli, A. Vespignani (World Scientific, Singapore, 2007), pp. 35–66.

    Google Scholar 

  29. R. Pastor-Satorras and A. Vespignani, Phys. Rev. E, 63 (2001), 066117.

    Article  Google Scholar 

  30. M. Boguñá, R. Pastor-Satorras and A. Vespignani, in: Statistical Mechanics of Complex Networks, Lecture Notes in Physics, vol. 625, ed. by R. Pastor-Satorras, J. M. Rubí, A. Díaz-Guilera (Springer Verlag, Berlin, 2003).

    Google Scholar 

  31. M. Boguñá and R. Pastor-Satorras, Phys. Rev. E, 66 (2002), 047104.

    Article  Google Scholar 

  32. J. D. Noh and H. Rieger, Phys. Rev. Lett., 92 (2004), 118701.

    Article  Google Scholar 

  33. L. Lovász, in Combinatorics, Paul Erdős is Eighty, vol. 2, ed. by V. T. Sós, D. Miklós, T. Szónyi (János Bolyai Mathematical Society, Bupadest, 1996), pp. 353–398.

    Google Scholar 

  34. S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys., 51 (2002), 1079.

    Article  Google Scholar 

  35. M. Catanzaro, M. Boguñá and R. Pastor-Satorras, Phys. Rev. E, 71 (2005), 027103.

    Article  Google Scholar 

  36. M. Boguñá, R. Pastor-Satorras and A. Vespignani, Euro. Phys. J. B, 38 (2004), 205.

    Article  Google Scholar 

  37. M. E. J. Newman, in: Handbook of Graphs and Networks: From the Genome to the Internet, ed. by S. Bornholdt, H. G. Schuster (Wiley-VCH, Berlin, 2003), pp. 35–68.

    Google Scholar 

  38. L. K. Gallos and P. Argyrakis, Phys. Rev. E, 72 (2005), 017101.

    Article  Google Scholar 

  39. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions (Dover, New York, 1972).

    MATH  Google Scholar 

  40. A. Bekessy, P. Bekessy and J. Komlos, Stud. Sci. Math. Hungar., 7 (1972), 343.

    MathSciNet  Google Scholar 

  41. E. A. Bender and E. R. Canfield, Journal of Combinatorial Theory A, 24 (1978), 296.

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Bollobás, Eur. J. Comb., 1 (1980), 311.

    MATH  Google Scholar 

  43. M. Molloy and B. Reed, Random Struct. Algorithms, 6 (1995), 161.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Park, M. E. J. Newman, Phys. Rev. E, 66 (2003), 026112.

    Article  Google Scholar 

  45. S. Maslov, K. Sneppen and A. Zaliznyak, Physica A, 333 (2004), 529.

    Article  Google Scholar 

  46. D. Torney and H. McConnell, J. Phys. Chem., 87 (1983), 1441.

    Article  Google Scholar 

  47. D. Torney and H. McConnell, Proc. R. Soc. Lond. A, 387 (1983), 147.

    Article  MATH  Google Scholar 

  48. D. Toussaint and F. Wilczek, J. Chem. Phys., 78 (1983), 2642.

    Article  Google Scholar 

  49. L. K. Gallos and P. Argyrakis, J. Phys.: Condens. Matter, 19 (2007), 065123.

    Article  Google Scholar 

  50. J. Newhouse and R. Kopelman, J. Phys. Chem., 92 (1988), 1538.

    Article  Google Scholar 

  51. L. K. Gallos, P. Argyrakis, Phys. Rev. E, 74 (2006), 056107.

    Article  Google Scholar 

  52. R. Cohen, K. Erez, D. ben Avraham and S. Havlin, Phys. Rev. Lett., 85 (2000), 4626.

    Article  Google Scholar 

  53. J. D. Noh and S. W. Kim, Journal of the Korean Physical Society, 48 (2006), S202.

    Google Scholar 

  54. C. Castellano et al., Phys. Rev. E, 71 (2005), 066107.

    Article  Google Scholar 

  55. L. Dall’Asta, A. Baronchelli, A. Barrat and V. Loreto, Phys. Rev. E, 74 (2006), 036105.

    Article  Google Scholar 

  56. S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Phys. Rev. Lett., 85 (2000), 4633.

    Article  Google Scholar 

  57. A. Barrat and R. Pastor-Satorras, Phys. Rev. E, 71 (2005), 036127.

    Article  Google Scholar 

  58. A. Baronchelli, M. Catanzaro and R. Pastor-Satorras, Random walks on scale-free trees (2008), E-print arXiv:0801.1278v1 [cond-mat.stat-mech].

    Google Scholar 

  59. K. H. Chang, K. G. Park, K. D. Ahan, S. Y. Kim, D. H. Ha and K. Kim, Journal of the Physical Society of Japan, 76 (2007), 035001.

    Article  Google Scholar 

  60. V. Colizza, R. Pastor-Satorras and A. Vespignani, Nature Physics, 3 (2007), 276.

    Article  Google Scholar 

  61. V. Colizza and A. Vespignani, Phys. Rev. Lett., 99 (2007), 148701.

    Article  Google Scholar 

  62. A. Baronchelli, M. Catanzaro and R. Pastor-Satorras, Bosonic reaction-diffusion processes on scale-free networks (2008), E-print arXiv:0802.3347v1 [cond-mat.statmech].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Catanzaro, M., Boguñá, M., Pastor-Satorras, R. (2008). Reaction-diffusion Processes in Scale-free Networks. In: Bollobás, B., Kozma, R., Miklós, D. (eds) Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69395-6_5

Download citation

Publish with us

Policies and ethics