Skip to main content

Learning and Representation: From Compressive Sampling to the ‘Symbol Learning Problem’

  • Chapter
Handbook of Large-Scale Random Networks

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 18))

  • 1738 Accesses

Abstract

In this paper a novel approach to neurocognitive modeling is proposed in which the central constraints are provided by the theory of reinforcement learning. In this formulation learning is (1) exploiting the statistical properties of the system’s environment, (2) constrained by biologically inspired Hebbian interactions and (3) based only on algorithms which are consistent and stable. In the resulting model some of the most enigmatic problems of artificial intelligence have to be addressed. In particular, considerations on combinatorial explosion lead to constraints on the concepts of state-action pairs: these concepts have the peculiar flavor of determinism in a partially observed and thus highly uncertain world. We will argue that these concepts of factored reinforcement learning result in an intriguing learning task that we call the symbol learning problem. For this task we sketch an information theoretic framework and point towards a possible resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Abbeel and A. Y. Ng, Apprenticeship learning via inverse reinforcement learning, in: D. Schuurmans, R. Geiner and C. Brodley, editors, Proceedings of the 21st International Conference on Machine Learning, pages 663–670, New York, NY, 2004. ACM Press.

    Google Scholar 

  2. K. Abed-Meraim and A. Belouchrani, Algorithms for joint block diagonalization, in: Proceedings of EUSIPCO, pages 209–212, 2004.

    Google Scholar 

  3. D. Ackley, G. E. Hinton and T. Sejnowski, A learning algorithm for Boltzmann machines, Cognitive Science, 9 (1985), 147–169.

    Article  Google Scholar 

  4. N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster, The algorithmic aspects of the regularity lemma, Journal of Algorithms, 16 (1994), 80–109.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Attneave, Some informational aspects of visual perception, Psychological Review, 61 (1954), 183–193.

    Article  Google Scholar 

  6. F. R. Bach and M. I. Jordan, Beyond independent components: Trees and clusters, Journal of Machine Learning Research, 4 (2003), 1205–1233.

    Article  MathSciNet  Google Scholar 

  7. F. R. Bach and M. I. Jordan, Finding clusters in Independent Component Analysis, in: Proceedings of ICA2003, pages 891–896, 2003.

    Google Scholar 

  8. D. H. Ballard, G. E. Hinton and T. J. Sejnowski, Parallel visual computation, Nature, 306 (1983), 21–26.

    Article  Google Scholar 

  9. H. B. Barlow, Sensory Communication, pages 217–234, MIT Press, Cambridge, MA, 1961.

    Google Scholar 

  10. A. Barto, Discrete and continuous models, International Journal of General Systems, (1978), 163–177.

    Google Scholar 

  11. A. P. Batista and W. T. Newsome, Visuo-motor control: Giving the brain a hand, Current Biology, 10 (2000), R145–R148.

    Article  Google Scholar 

  12. J. Baxter, A. Tridgell and L. Weaver, Machines that learn to play games, chapter Reinforcement learning and chess, pages 91–116, Nova Science Publishers, Inc., 2001.

    Google Scholar 

  13. C. Boutilier, R. Dearden and M. Goldszmidt, Exploiting structure in policy construction, in: Proceedings of the 14th Fourteenth International Joint Conference on Artificial Intelligence, pages 1104–1111, 1995.

    Google Scholar 

  14. C. Boutilier, R. Dearden and M. Goldszmidt, Stochastic dynamic programming with factored representations, Artificial Intelligence, 121(1–2) (2000), 49–107.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. I. Brafman and M. Tennenholtz, A near-optimal polynomial time algorithm for learning in certain classes of stochastic games, Artificial Intelligence, 121(1–2) (2000), 31–47.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. I. Brafman and M. Tennenholtz, R-max — a general polynomial time algorithm for near-optimal reinforcement learning, Journal of Machine Learning Research, 3 (2002), 213–231.

    Article  MathSciNet  Google Scholar 

  17. L. Buşoniu, R. Babuška and B. De Schutter, Multi-agent reinforcement learning: A survey, in: Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision, pages 527–532, 2006.

    Google Scholar 

  18. [18] E. Candes and J. Romberg, Quantitative robust uncertainty principles and optimally sparse decompositions, Foundations of Computational Mathematics, 6 (2006), 227–254.

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489–509.

    Article  MathSciNet  Google Scholar 

  20. J. F. Cardoso, Multidimensional independent component analysis, in: Proceedings of ICASSP, volume 4, pages 1941–1944, 1998.

    Google Scholar 

  21. O. Carter, D. Presti, C. Callistemon, Y. Ungerer, G. Liu and J. Pettigrew, Meditation alters perceptual rivalry in Tibetan Buddhist monks, Current Biology, 15 (2005), R412–R413.

    Article  Google Scholar 

  22. Y.-H. Chang, T. Ho and L. P. Kaelbling, All learning is local: Multi-agent learning in global reward games, in: Advances in Neural Information Processing Systems 16, 2004.

    Google Scholar 

  23. S. Choi, A. Cichocki, H.-M. Park and S.-Y. Lee, Blind source separation and independent component analysis, Neural Information Processing — Letters and Reviews, 6 (2005), 1–57.

    Google Scholar 

  24. J. J. Chrobak, A. Lőrincz and G. Buzsáki, Physiological patterns in the hippocampo-entorhinal cortex system, Hippocampus, 10 (2000), 457–465.

    Article  Google Scholar 

  25. P. Comon, Independent Component Analysis, a new concept? Signal Processing, Elsevier, 36(3) (April 1994), 287–314. Special issue on Higher-Order Statistics.

    MATH  Google Scholar 

  26. V. Conitzer and T. Sandholm, AWESOME: A general multiagent learning algorithm that converges in self-play and learns a best response against stationary opponents, Machine Learning, 67 (2007), 23–43.

    Article  Google Scholar 

  27. N. D. Daw, Y. Niv and P. Dayan, Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control, Nature Neuroscience, 8 (2005), 1704–1711.

    Article  Google Scholar 

  28. P.-T. de Boer, D. P. Kroese, S. Mannor and R. Y. Rubinstein, A tutorial on the cross-entropy method, Annals of Operations Research, 134 (2004), 19–67.

    Article  Google Scholar 

  29. M. R. Delgado, Reward-related responses in the human striatum, Annals of the New York Academy of Sciences, 1104 (2007), 70–88.

    Article  Google Scholar 

  30. D. C. Dennett, Consciousness explained, Little Brown, Boston, MA, 1991.

    Google Scholar 

  31. D. W. Dong and J. J. Atick, Statistics of natural time varying images, Network Computation in Neural Systems, 6 (1995), 345–358.

    Article  MATH  Google Scholar 

  32. D. W. Dong and J. J. Atick, Temporal decorrelation: A theory of lagged and nonlagged responses in the lateral geniculate-nucleus, Network Computation in Neural Systems, 6 (1995), 159–178.

    Article  MATH  Google Scholar 

  33. D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289–1306.

    Article  MathSciNet  Google Scholar 

  34. P. Drineas, R. Kannan and M. W. Mahoney, Fast monte carlo algorithms for matrices i: Approximating matrix multiplication, SIAM Journal of Computing, 36 (2006), 132–157.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Drineas, M. W. Mahoney and S. Muthukrishnan, Sampling algorithms for l2 regression and applications, in: Proceedings of the 17th Annual SODA, pages 1127–1136, 2006.

    Google Scholar 

  36. D. J. Field, What is the goal of sensory coding?, Neural Computation, 6 (1994), 559–601.

    Article  Google Scholar 

  37. J. A. Fodor, Methodological solipsism considered as a research strategy in cognitive psychology, Behavioral and Brain Sciences, 3 (1980), 63–109.

    Article  Google Scholar 

  38. T. Fomin, T. Rozgonyi, Cs. Szepesvári and A. Lőrincz, Self-organizing multiresolution grid for motion planning and control, International Journal of Neural Systems, 7 (1997), 757–776.

    Article  Google Scholar 

  39. M. Franzius, H. Sprekeler and L. Wiskott, Slowness and sparseness lead to place, head-direction and spatial-view cells, PLoS Computational Biology, (8), 2007, doi:10.1371/journal.pcbi.0030166.

    Google Scholar 

  40. A. M. Frieze and R. Kannan, The regularity lemma and approximation schemes for dense problems, in: Proceedings of the 37th Annual IEEE Symposium on Foundations of Computing, pages 12–20, 1996.

    Google Scholar 

  41. Alan Frieze and Ravi Kannan, A simple algorithm for constructing szemerédi’s regularity partition, Electronic Journal of Combinatorics, 6 (1999). http://www.emis.ams.org/journals/EJC/Volume 6/PDF/v6i1r17.pdf.

    Google Scholar 

  42. C. Fyfe and R. Baddeley, Finding compact and sparse-distributed representations of visual images, Network Computation in Neural Systems, 6 (1995), 333–344.

    Article  MATH  Google Scholar 

  43. C. G. Gross, G. S. Yap and M. S. A. Graziano, Coding of visual space by premotor neurons, Science, 266 (1994), 1054–1057.

    Article  Google Scholar 

  44. C. Guestrin, D. Koller, C. Gearhart and N. Kanodia, Generalizing plans to new environments in relational MDPs, in: Proceedings of the 18th International Joint Conference on Artificial Intelligence, 2003.

    Google Scholar 

  45. C. Guestrin, D. Koller, R. Parr and S. Venkataraman, Efficient solution algorithms for factored MDPs, Journal of Artificial Intelligence Research, 19 (2002), 399–468.

    MathSciNet  Google Scholar 

  46. V. Gyenes and A. Lőrincz, Co-learning and the development of communication, Lecture Notes in Computer Science, 4668 (2007), 827–837.

    Article  Google Scholar 

  47. S. Harnad, The symbol grounding problem, Physica D, D 42 (1990), 335–346.

    Article  Google Scholar 

  48. D. A. Henze, L. Wittner and G. Buzsáki, Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo, Nature Neuroscience, 5 (2002), 790–795.

    Google Scholar 

  49. G. E. Hinton and R. R. Slakhutdnikov, Reducing the dimensionality of data with neural networks, Science, 313 (2006), 504–507.

    Article  MathSciNet  Google Scholar 

  50. Y. K. Hwang and N. Ahuja, Gross motion planning — a survey, ACM Computing Surveys, 24(3) (1992), 219–291.

    Article  Google Scholar 

  51. A. Hyvärinen, Independent component analysis for time-dependent stochastic processes, in: Proceedings of ICANN, pages 541–546, Berlin, 1998. Springer-Verlag.

    Google Scholar 

  52. A. Hyvärinen and U. Köster, FastISA: A fast fixed-point algorithm for independent subspace analysis, in: Proceedings of ESANN, Evere, Belgium, 2006.

    Google Scholar 

  53. S. Ishii, H. Fujita, M. Mitsutake, T. Yamazaki, J. Matsuda and Y. Matsuno, A reinforcement learning scheme for a partially-observable multi-agent game, Machine Learning, 59(1–2) (2005), 31–54.

    Article  Google Scholar 

  54. W. James, The Principles of Psychology, 1890, p. 488 http://www.archive.org/details/theprinciplesofp01jameuoft

    Google Scholar 

  55. Zs. Kalmár, Cs. Szepesvári and A. Lőrincz, Module-based reinforcement learning: Experiments with a real robot, Machine Learning, 31 (1998), 55–85.

    Article  MATH  Google Scholar 

  56. M. Kawato, H. Hayakawa and T. Inui, A forward-inverse model of reciprocal connections between visual neocortical areas, Network, 4 (1993), 415–422.

    Article  MATH  Google Scholar 

  57. M Kearns and S. Singh, Near-optimal reinforcement learning in polynomial time, in: Proceedings of the 15th International Conference on Machine Learning, pages 260–268, San Francisco, CA, 1998. Morgan Kaufmann Publishers Inc.

    Google Scholar 

  58. F. Kloosterman, T. van Haeften and F. H. Lopes da Silva, Two reentrant pathways in the hippocampal-entorhinal system, Hippocampus, 14 (2004), 1026–1039.

    Article  Google Scholar 

  59. B. J. Knowlton and L. R. Squire, The learning of categories: parallel brain systems for item memory and category knowledge, Science, 10 (1993), 1747–1749.

    Article  Google Scholar 

  60. B. Knutson and G. E. Wimmer, Splitting the difference: How does the brain code reward episodes?, Annals of the New York Academy of Sciences, 1104, (2007), 54–69.

    Article  Google Scholar 

  61. D. Koller and R. Parr, Policy iteration for factored MDPs, in: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 326–334, 2000.

    Google Scholar 

  62. B. Kveton, M. Hauskrecht and C. Guestrin, Solving factored MDPs with hybrid state and action variables, Journal of Artificial Intelligence Research, 27 (2006), 153–201.

    MATH  MathSciNet  Google Scholar 

  63. D. Lee and H. Seo, Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex, Annals of the New York Academy of Sciences, 1104 (2007), 108–122.

    Article  Google Scholar 

  64. H. Lee, A. Battle, R. Raina and A. Y. Ng, Efficient sparse coding algorithms, in: B. Schölkopf, J. Platt and T. Hoffman, editors, Advances in Neural Information Processing Systems 19, pages 801–808. MIT Press, Cambridge, MA, 2007.

    Google Scholar 

  65. D. A. Leopold and N. K. Logothetis, Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry, Nature, 379 (1996), 549–553.

    Article  Google Scholar 

  66. D. A. Leopold, M. Wilke, A. Maier and N. K. Logothetis, Stable perception of visually ambiguous patterns, Nature Neuroscience, 5 (2002), 605–609.

    Article  Google Scholar 

  67. N. K. Logothetis and J. D. Schall, Neuronal correlates of subjective visual-perception, Science, 245 (1989), 761–763.au]1 András Lőrincz

    Article  Google Scholar 

  68. A. Lőrincz, Forming independent components via temporal locking of reconstruction architectures: A functional model of the hippocampus, Biological Cybernetics, 75 (1998), 37–47.

    Google Scholar 

  69. A. Lőrincz and G. Buzsáki, Two-phase computational model training long-term memories in the entorhinal-hippocampal region, Annals of the New York Academy of Sciences, 911, (2000), 83–111.

    Google Scholar 

  70. A. Lőrincz, Gy. Hévízi and Cs. Szepesvári, Ockham’s razor modeling of the matrisome channels of the basal ganglia thalamocortical loop, International Journal of Neural Systems, 11 (2001), 125–143.

    Google Scholar 

  71. A. Lőrincz, V. Gyenes, M. Kiszlinger and I. Szita, Mind model seems necessary for the emergence of communication, Neural Information Processing — Letters and Reviews, 11 (2007), 109–121.

    Google Scholar 

  72. A. Lőrincz, M. Kiszlinger and G. Szirtes, Model of the hippocampal formation explains the coexistence of grid cells and place cells, http://arxiv.org/abs/0804.3176, 2008.

    Google Scholar 

  73. A. Lőrincz, Zs. Palotai and G. Szirtes, Spike-based cross-entropy method for reconstruction, Neurocomputing, 2008, (in press).

    Google Scholar 

  74. A. Lőrincz, I. Pólik and I. Szita, Event-learning and robust policy heuristics, Cognitive Systems Research, 4 (2003), 319–337.

    Article  Google Scholar 

  75. A. Lőrincz and Z. Szabó, Neurally plausible, non-combinatorial iterative independent process analysis, Neurocomputing, 70 (2007), 1569–1573.

    Article  Google Scholar 

  76. A. Lőrincz, B. Szatmáry and G. Szirtes, Mystery of structure and function of sensory processing areas of the neocortex: A resolution, Journal of Computational Neuroscience, 13 (2002), 187–205.

    Article  Google Scholar 

  77. A. Lőrincz and G. Szirtes, Autoregressive model of the hippocampal representation of events, in: Proceedings of IJCNN2009, (in press).

    Google Scholar 

  78. L. Margolin, On the convergence of the cross-entropy method, Annals of Operations Research, 134 (2005), 201–214.

    Article  MATH  MathSciNet  Google Scholar 

  79. B. L. McNaughton, F P. Battaglia, O. Jensen, E. I. Moser and M.-B. Moser, Path integration and the neural basis of the ćognitive map, Nature Reviews Neuroscience, 7 (2006), 663–678.

    Article  Google Scholar 

  80. T. C. Mills, Time Series Techniques for Economists, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  81. P. R. Montague, S. E. Hyman and J. D. Cohen, Computational roles for dopamine in behavioural control, Nature, 431 (2004), 760–767.

    Article  Google Scholar 

  82. G. Neu and Cs. Szepesvári, Apprenticeship learning using inverse reinforcement learning and gradient methods, in: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, pages 295–302. AUAI Press, 2007.

    Google Scholar 

  83. A. Y. Ng and S. Russell, Algorithms for inverse reinforcement learning, in: Proceedings of the 17th International Conference on Machine Learning, pages 663–670, San Francisco, CA, 2000. Morgan Kaufmann Publishers Inc.

    Google Scholar 

  84. G. Nolte, F. C. Meinecke, A. Ziehe and K. R. Müller, Identifying interactions in mixed and noisy complex systems, Physical Review E, 73 (2006), doi: 051913.

    Google Scholar 

  85. B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, 381 (1996), 607–609.

    Article  Google Scholar 

  86. B. A. Olshausen and D. J. Field, Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37 (1997), 3311–3325.

    Article  Google Scholar 

  87. W. X. Pan, R. Schmidt, J. R. Wickens and B. I. Hyland, Dopamine cells respond to predicted events during classical conditioning: Evidence for eligibility traces in the reward-learning network, Journal of Neuroscience, 25 (2005), 6235–6242.

    Article  Google Scholar 

  88. B. Póczos and A. Lőrincz, Independent subspace analysis using geodesic spanning trees, in: Proceedings of the 22nd International Conference on Machine Learning, pages 673–680, New York, NY, USA, 2005. ACM Press.

    Google Scholar 

  89. B. Póczos, Z. Szabó, M. Kiszlinger and A. Lőrincz, Independent process analysis without a priori dimensional information, Lecture Notes in Computer Science, 4666 (2007), 252–259.

    Article  Google Scholar 

  90. B. Póczos, B. Takács and A. Lőrincz, Independent subspace analysis on innovations, in: Proceedings of ECML, pages 698–706, Berlin, 2005. Springer-Verlag.

    Google Scholar 

  91. T. Poggio, V. Torre and C. Koch, Computational vision and regularization theory, Nature, 317 (1985), 314–319.

    Article  Google Scholar 

  92. Z. W. Pylyshyn, Computation and cognition: Issues in the foundations of cognitive science, Behavioral and Brain Sciences, 3 (1980), 111–169.

    Article  Google Scholar 

  93. R. P. N. Rao and D. H. Ballard, Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects, Nature Neuroscience, 2 (1999), 79–87.

    Article  Google Scholar 

  94. P. Redgrave and K. Gurney, The short-latency dopamine signal: a role in discovering novel actions?, Nature Reviews Neuroscience, 7 (2006), 967–975.

    Article  Google Scholar 

  95. A. D. Redish, F. P. Battaglia, M. K. Chawla, A. D. Ekstrom, J. L. Gerrard, P. Lipa, E. S. Rosenzweig, P. F. Worley, J. F. Guzowski, B. L. McNaughton and C. A. Barnes, Independence of firing correlates of anatomically proximate hippocampal pyramidal cells, Journal of Neuroscience, 21 (2001), 1–6.

    Google Scholar 

  96. M. Rehn and F. T. Sommer, A network that uses few active neurones to code visual input predicts the diverse shapes of cortical receptive fields, Journal of Computational Neuroscience, 22 (2007), 135–146.

    Article  MathSciNet  Google Scholar 

  97. P. Reinagel and R. C. Reid, Temporal coding of visual information in the thalamus, Journal of Neuroscience, 20 (2000), 5392–5400.

    Google Scholar 

  98. B. Sallans, Reinforcement Learning for Factored Markov Decision Processes, PhD thesis, University of Toronto, 2002.

    Google Scholar 

  99. K. Samejima and K. Doya, Multiple representations of belief states and action values in corticobasal ganglia loops, Annals of the New York Academy of Sciences, 1104 (2007), 213–228.

    Article  Google Scholar 

  100. S. Sanner and C. Boutilier, Approximate linear programming for first-order MDPs, in: Proceedings of the 21th Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 509–517, 2005.

    Google Scholar 

  101. W. Schultz, Getting formal with dopamine and reward, Neuron, 36 (2002), 241–263.

    Article  Google Scholar 

  102. W. B. Scoville and B. Milner, Loss of recent memory after bilateral hippocampal lesions, Journal of Neurology, Neurosurgery and Psychiatry, 20 (1957), 11–21.

    Article  Google Scholar 

  103. P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper and E. Postma, Adaptive game ai with dynamic scripting, Machine Learning, 63(3) (2006), 217–248.

    Article  Google Scholar 

  104. L. R. Squire, Memory and hippocampus: a synthesis of findings with rats, monkeys and humans, Psychological Review, 99 (1992), 195–231.

    Article  Google Scholar 

  105. H. Stögbauer, A. Kraskov, S. A. Astakhov and P. Grassberger, Least dependent component analysis based on mutual information, Physical Review E, 70, 2004.

    Google Scholar 

  106. Z. Szabó, B. Póczos and A. Lőrincz, Cross-entropy optimization for independent process analysis, in: Lecture Notes in Computer Science, 3889 (2006), 909–916. Springer, 2006.

    Article  Google Scholar 

  107. Z. Szabó, B. Póczos and A. Lőrincz, Separation theorem for K-independent subspace analysis with sufficient conditions, Technical report, 2006, ttp://arxiv.org/abs/math.ST/0608100.

    Google Scholar 

  108. Z. Szabó, B. Póczos and A. Lőrincz, Undercomplete blind subspace deconvolution, Journal of Machine Learning Research, 8 (2007), 1063–1095.

    Google Scholar 

  109. Cs. Szepesvári, Sz. Cimmer and A. Lőrincz, Neurocontroller using dynamic state feedback for compensatory control, Neural Networks, 10 (1997), 1691–1708.

    Article  Google Scholar 

  110. Cs. Szepesvári and A. Lőrincz, Approximate inverse-dynamics based robust control using static and dynamic feedback, in: Kalkkuhl, K. J. Hunt, R. Zbikowski and A. Dzielinski, editors, Applications of Neural Adaptive Control Theory, volume 2, pages 151–179. World Scientific, Singapore, 1997.

    Google Scholar 

  111. Cs. Szepesvári and A. Lőrincz, An integrated architecture for motion-control and path-planning, Journal of Robotic Systems, 15 (1998), 1–15.

    Article  MATH  Google Scholar 

  112. I. Szita and A. Lőrincz, Learning Tetris using the noisy cross-entropy method, Neural Computation, 18(12) (2006), 2936–2941.

    Article  MATH  Google Scholar 

  113. I. Szita and A. Lőrincz, Learning to play using low-complexity rule-based policies: Illustrations through Ms. Pac-Man, Journal of Artificial Intelligence Research, 30 (2007), 659–684.

    MATH  Google Scholar 

  114. I. Szita and A. Lőrincz, Factored value iteration converges, Acta Cybernetica, accepted (2008). http://arxiv.org/abs/0801.2069.

    Google Scholar 

  115. I. Szita and A. Lőrincz, Online variants of the cross-entropy method, http://arxiv.org/abs/0801.1988v1, 2008.

    Google Scholar 

  116. I. Szita, B. Takács and A. Lőrincz, Epsilon-mdps: Learning in varying environments, Journal of Machine Learning Research, 3 (2003), 145–174.

    Article  MATH  Google Scholar 

  117. T. Tao, Szemerédi’s regularity lemma revisited, Contributions to Discrete Mathematics, 1 (2006), 8–28.

    MATH  MathSciNet  Google Scholar 

  118. S. C. Tanaka, K. Doya, G. Okada, K. Ueda, Y. Okamoto and S. Yamawaki, 3,4, Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops, Nature Neuroscience, 7 (2004), 887–893.

    Article  Google Scholar 

  119. G. Tesauro, Temporal difference learning and TD-gammon, Communications of the ACM, 38(3) (1995), 58–68.

    Article  Google Scholar 

  120. F. J. Theis, Uniqueness of complex and multidimensional independent component analysis, Signal Processing, 84(5) (2004), 951–956.

    Article  MATH  Google Scholar 

  121. F. J. Theis, Blind signal separation into groups of dependent signals using joint block diagonalization, in: Proceedings of ISCAS, pages 5878–5881, 2005.

    Google Scholar 

  122. F. J. Theis, Towards a general independent subspace analysis, in: Advances in Neural Information Processing Systems 19, pages 1361–1368, 2007.

    Google Scholar 

  123. R. Vollgraf and K. Obermayer, Multi-dimensional ICA to separate correlated sources, in: Advances in Neural Information Processing Systems 14, pages 993–1000. MIT Press, 2001.

    Google Scholar 

  124. S. Yu and J. Shi, Multiclass spectral clustering, in: Proceedings of ICCV, pages 313–319, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Lőrincz, A. (2008). Learning and Representation: From Compressive Sampling to the ‘Symbol Learning Problem’. In: Bollobás, B., Kozma, R., Miklós, D. (eds) Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69395-6_11

Download citation

Publish with us

Policies and ethics