The Inverse Problem of Evolving Networks — with Application to Social Nets

  • Gábor Csárdi
  • Katherine J. Strandburg
  • Jan Tobochnik
  • Péter Érdi
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 18)


Many complex systems can be modeled by graphs [8]. The vertices of the graph represent objects of the system, and the edges of the graph the relationships between these objects. These relationships may be structural or functional, according to the modeler’s needs [1, 29, 7].


Inverse Problem Kernel Function Property Vector Preferential Attachment Evolve Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Réka Albert and Albert-Lászl’o Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, 74 (2002), 47.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Réka Albert, Hawoong Jeong and Albert-Lászl’o Barabási, The diameter of the world wide web, Nature, 401 (1999), 130–131.CrossRefGoogle Scholar
  3. [3]
    L. A. N. Amaral, A. Scala, M. Barhélémy and H. E. Stanley, Classes of small-world networks, Proc. Natl. Acad. Sci. USA, 97(21) (2000), 11149–11152, 10.CrossRefGoogle Scholar
  4. [4]
    A-L Barabási, H Jeong, Z Néda, E Ravasz, A Schubert and T Vicsek, Evolution of the social network of scientific collaborations, Physica A, 311 (2002), 590–614.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Albert-Lászl’o Barabási and Réka Albert, Emergence of scaling in random networks, Science, 286(5439) (1999), 509–512.CrossRefMathSciNetGoogle Scholar
  6. [6]
    C. J. P. Belisle, Convergence theorems for a class of simulated annealing algorithms on rd, Journal of Applied Probability, 29 (1992), 885–895.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics, Physics Reports, 424 (2006), 175–308.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Béla Bollobás, Modern graph theory, Springer (2004).Google Scholar
  9. [9]
    Béla Bollobás and Oliver Riordan, The diameter of a scale-free random graph, Combinatorica, 24(1) (2004), 5–34.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Lj. B. Ciric, A generalization of Banach’s contraction principle, Proceedings of the American Mathematical Society, 45(2) (1974), 267–273.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Gábor Csárdi, Dynamics of citation networks, in: Proceedings of the Conference on Artificial Neural Networks (2006).Google Scholar
  12. [12]
    Gábor Csárdi, Modeling complex systems by evolving networks, PhD thesis, Eötvös Loránd University, 2007.Google Scholar
  13. [13]
    Gábor Csárdi and Tamás Nepusz, The igraph software package for complex network research, InterJournal, Complex Systems: 1695 (2006).Google Scholar
  14. [14]
    Gábor Csárdi, Katherine J. Strandburg, Lászl’o Zalányi, Jan Tobochnik and Péter Érdi, Modeling innovation by a kinetic description of the patent system, Physica A, 374 (2007), 783–793.CrossRefGoogle Scholar
  15. [15]
    S. N. Dorogovtsev and J. F. F. Mendes, Evolution of networks with aging of sites, Phys. Rev. E, 62(2) (2000), 1842–1845.CrossRefGoogle Scholar
  16. [16]
    S. N. Dorogovtsev and J. F. F. Mendes, Effect of the accelerating growth of communications networks on their structure, Phys. Rev. E, 63 (2001), 025101.CrossRefGoogle Scholar
  17. [17]
    S. N. D orogovtsev, J. F. F. Mendes and A. N. Samukhin, Growing network with heritable connectivity of nodes, cond-mat/0011077, 2000.Google Scholar
  18. [18]
    S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Generic scale of the “scale-free” growing networks, Phys. Rev. E, 63 (2001), 062101.CrossRefGoogle Scholar
  19. [19]
    S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Giant strongly connected component of directed networks, Phys. Rev. E, 64 (2001), 025101.CrossRefGoogle Scholar
  20. [20]
    G. Ergun and G. J. Rodgers, Growing random networks with fitness, Physica A, 303 (2002), 261–272.CrossRefGoogle Scholar
  21. [21]
    Bronwyn H. Hall, Adam B. Jaffe and Manuel Trajtenberg, The nber patent citation data file: Lessons, insights and methodological tools, in: Adam B. Jaffe and Manuel Trajtenberg, editors, Patents, Citations, and Innovations: A Window on the Knowledge Economy. MIT Press (2003).Google Scholar
  22. [22]
    Adam B. Jaffe and Josh Lerner, Innovation and Its Discontents: How Our Broken Patent System is Endangering Innovation and Progress, and What to Do About It, Princeton University Press (2004).Google Scholar
  23. [23]
    P. L. Krapivsky, G. J. Rodgers and S. Redner, Degree distributions of growing random networks, Phys. Rev. Lett., 86 (2001), 5401.CrossRefGoogle Scholar
  24. [24]
    Jure Leskovec, Jon Kleinberg and Christos Faloutsos, Graphs over time: densification laws, shrinking diameters and possible explanations, in: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, (2005), pp. 177–187.Google Scholar
  25. [25]
    M. E. J. Newman, Clustering and preferential attachment in growing networks, Physical Review E, 64 (2001), 025102.CrossRefGoogle Scholar
  26. [26]
    M. E. J. Newman, Scientific collaboration networks. I. Network construction and fundamental results, Physical Review E, 64 (2001), 016131.CrossRefGoogle Scholar
  27. [27]
    M. E. J. Newman, Assortative mixing in networks, Phys. Rev. Lett., 89 (2002), 208701.CrossRefGoogle Scholar
  28. [28]
    M. E. J. Newman, Mixing patterns in networks, Phys. Rev. E, 67 (2003), 026126.CrossRefMathSciNetGoogle Scholar
  29. [29]
    M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167–256.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer, 1999.Google Scholar
  31. [31]
    G. Orbán, T. Kiss, M. Lengyel and P. Érdi, Hippocampal rhythm generation: gamma related theta frequency resonance, Biological Cybernetics, 84 (2001), 123–132.CrossRefGoogle Scholar
  32. [32]
    D. J. de S. Price, A general theory of bibliometric and other cumulative advantage processes, J. Amer. Soc. Inform. Sci., 27 (1976), 292–306.CrossRefGoogle Scholar
  33. [33]
    R. Development. Core Team, R: A Language and Environment for Statistical Computing, R. Foundation for Statistical Computing, Vienna, Austria (2007), ISBN: 3-900051-07-0.Google Scholar
  34. [34]
    Bosiljka Tadic, Dynamics of directed graphs: the world-wide web, Physica A, 293 (2001), 273–284.zbMATHCrossRefGoogle Scholar
  35. [35]
    Alexei Vazquez, Knowing a network by walking on it: emergence of scaling, Europhys. Lett., 54 (2001), 430. cond-mat/0006132.CrossRefGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2008

Authors and Affiliations

  • Gábor Csárdi
    • 1
    • 2
  • Katherine J. Strandburg
    • 4
    • 5
  • Jan Tobochnik
    • 3
  • Péter Érdi
    • 1
    • 2
  1. 1.Department of BiophysicsKFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Center for Complex Systems StudiesKalamazoo CollegeKalamazooUSA
  3. 3.Departments of Physics and Computer ScienceKalamazoo CollegeKalamazooUSA
  4. 4.New York University School of LawNew YorkUSA
  5. 5.DePaul UniversityCollege of LawChicagoUSA

Personalised recommendations