Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 144))

  • 1240 Accesses

Summary

In existing theoretical and experimental work, Estimation of Distribution Algorithms (EDAs) are primarily applied to decomposable test problems. State-of-the-art EDAs like the Hierarchical Bayesian Optimization Algorithm (hBOA), the Learning Factorized Distribution Algorithm (LFDA) or Estimation of Bayesian Networks Algorithm (EBNA) solve these problems in polynomial time. Regarding this success, it is tempting to apply EDAs to real-world problems. But up to now, it has rarely been analyzed which real-world problems are decomposable. The main contribution of this chapter is twofold: (1) It shows that uncapacitated single-product and multi-product lotsizing problems are decomposable. (2) A state-of-the-art EDA is used to solve both problems. The problems are fundamental in inventory management and their fitness functions can be expressed as additively decomposable functions. It is analyzed how a search distribution of Boltzmann-type factorizes for these functions and it is shown that the factorizations of the Boltzmann distribution are polynomially bounded. Consequently, experimental scalability analysis is conducted for both problems with a state-of-the-art EDA. The total number of fitness evaluations required to reliably solve the problems to optimality is found to grow with a low-order polynomial depending on the problem size. The results confirm existing scalability theory for decomposable problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksoy, Y., Erenguc, S.S.: Multi-item inventory models with coordinated replenishments. International Journal of Operations Management 8(1), 63–73 (1988)

    Article  Google Scholar 

  2. Arkin, E., Joneja, D., Roundy, R.: Computational complexity of uncapacitated multi-echelon production planning problems. Operations Research Letters 8, 61–66 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boctor, F.F., Laporte, G., Renaud, J.: Models and algorithms for the dynamic joint replenishment problem. International Journal of Production Research 42(13), 2667–2678 (2004)

    Article  MATH  Google Scholar 

  4. Bosman, P.A.N., Thierens, D.: Learning probabilistic models for enhanced evolutionary computation. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 147–176. Springer, Berlin (2004)

    Google Scholar 

  5. de Bodt, M., Gelders, L., van Wassenhove, L.: Lot sizing under dynamic demand conditions: A review. Engineering Costs and Production Economics 8, 165–187 (1984)

    Article  Google Scholar 

  6. Deb, K., Goldberg, D.E.: Analysing deception in trap functions. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, pp. 93–108. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  7. Erenguc, S.S.: Multiproduct dynamic lot-sizing model with coordinated replenishments. Naval Research Logistics 35, 1–22 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Federgruen, A., Tzur, M.: A simple forward algorithm to solve general dynamic lot sizing models with n periods in O(n log n) or O(n) time. Management Science 37, 909–925 (1991)

    MATH  Google Scholar 

  9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  10. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Genetic Algorithms and Evolutionary Computation, vol. 7. Springer, Berlin (2002)

    Google Scholar 

  11. Goldberg, D.E., Deb, K., Kargupta, H., Harik, G.: Rapid, accurate optimization of difficult problems using fast messy genetic algorithms. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 56–64. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  12. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis and first results. Complex Systems 10(5), 385–408 (1989)

    MathSciNet  Google Scholar 

  13. Harik, G.: Linkage learning via probabilistic modeling in the ECGA. Technical Report 99010, IlliGAL, University of Illinois, Urbana, Illinois (1999)

    Google Scholar 

  14. Harik, G., Cantú-Paz, E., Goldberg, D.E., Miller, B.L.: The gambler’s ruin problem, genetic algorithms, and the sizing of populations. Evolutionary Computation 7(3), 231–253 (1999)

    Article  Google Scholar 

  15. Harik, G., Goldberg, D.E.: Learning linkage. In: Belew, R.K., Vose, M.D. (eds.) Foundations of Genetic Algorithms 4, pp. 247–262. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  16. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, Michigan (1975)

    Google Scholar 

  17. Joneja, D.: The joint replenishment problem: New heuristics and worst case performance bounds. Operations Research 38, 711–723 (1990)

    MATH  Google Scholar 

  18. Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Naudts, B., Kallel, L., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 175–206. Springer, Berlin (2001)

    Google Scholar 

  19. Kao, E.P.C.: A multi-product dynamic lot-size model with individual and joint setup costs. Operations Research 27, 279–289 (1979)

    MATH  Google Scholar 

  20. Kargupta, H.: SEARCH, Polynomial Complexity, and the Fast Messy Genetic Algorithm. PhD thesis, University of Illinois, Urbana, Illinois (1995)

    Google Scholar 

  21. Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Genetic Algorithms and Evolutionary Computation, vol. 2. Kluwer Academic Publishers, Norwell (2001)

    Google Scholar 

  22. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.): Towards a New Evolutionary Computation. Studies in Fuzziness and Soft Computing, vol. 192. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Mahnig, T.: Populationsbasierte Optimierung durch das Lernen von Interaktionen mit Bayes’schen Netzen. PhD thesis, University of Bonn, Sankt Augustin, GMD Research Series No. 3/2001

    Google Scholar 

  24. Mandl, F.: Statistical Physics, 2nd edn. The Manchester Physics Series. Wiley, Chichester (1988)

    Google Scholar 

  25. Mühlenbein, H., Höns, R.: The estimation of distributions and the mimimum relative entropy principle. Evolutionary Computation 13(1), 1–27 (2005)

    Article  Google Scholar 

  26. Mühlenbein, H., Mahnig, T.: FDA – A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation 7(4), 353–376 (1999)

    Article  Google Scholar 

  27. Mühlenbein, H., Mahnig, T.: Evolutionary algorithms: From recombination to search distributions. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 137–176. Springer, Berlin (2000)

    Google Scholar 

  28. Mühlenbein, H., Mahnig, T., Rodriguez, A.O.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5, 215–247 (1999)

    Article  MATH  Google Scholar 

  29. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions: I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Berlin (1996)

    Chapter  Google Scholar 

  30. Narayanan, A., Robinson, E.P.: More on models and formulations for the dynamic joint replenishment problem. International Journal of Production Research 44(2), 297–383 (2006)

    Article  Google Scholar 

  31. Ochoa, A., Soto, M.R.: Linking entropy to estimation of distribution algorithms. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. Studies in Fuzziness and Soft Computing, vol. 192, pp. 1–38. Springer, Berlin (2006)

    Google Scholar 

  32. Pelikan, M.: Bayesian optimization algorithm: From Single Level to Hierarchy. PhD thesis, University of Illinois at Urbana-Champaign, Department of Computer Science, Urbana, Illinois (2002)

    Google Scholar 

  33. Pelikan, M., Goldberg, D.E.: Hierarchical BOA solves ising spin glasses and MAXSAT. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, D., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Standish, R., Kendall, G., Wilson, S., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A.C., Dowsland, K., Jonoska, N., Miller, J. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1271–1282. Springer, Berlin (2003)

    Chapter  Google Scholar 

  34. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the GECCO 1999 Genetic and Evolutionary Computation Conference, pp. 525–532. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  35. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: Linkage problem, distribution estimation, and Bayesian networks. Evolutionary Computation 8(3), 311–341 (2000)

    Article  Google Scholar 

  36. Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21(1), 5–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pelikan, M., Sastry, K., Butz, M.V., Goldberg, D.E.: Hierarchical BOA on random decomposable problems. In: Keijzer, M., Cattolico, M., Arnold, D., Babovic, V., Blum, C., Bosman, P., Butz, M.V., Coello Coello, C., Dasgupta, D., Ficici, S.G., Foster, J., Hernandez-Aguirre, A., Hornby, G., Lipson, H., McMinn, P., Moore, J., Raidl, G., Rothlauf, F., Ryan, C., Thierens, D. (eds.) Proceedings of the GECCO 2006 Genetic and Evolutionary Computation Conference, pp. 431–432. ACM Press, New York (2006)

    Chapter  Google Scholar 

  38. Robinson, E.P., Gao, L.L.: A dual ascent procedure for multiproduct dynamic demand coordinated replenishment with backlogging. Management Science 42, 1556–1564 (1996)

    MATH  Google Scholar 

  39. Silver, E.A.: Coordinated replenishments of items under time varying demand: Dynamic programming formulation. Naval Research Logistics Quarterly 26, 141–151 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  40. Thierens, D.: Scalability problems of simple genetic algorithms. Evolutionary Computation 7(4), 331–352 (1999)

    Article  Google Scholar 

  41. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Forrest, S. (ed.) Proceedings of the Fifth Conference on Genetic Algorithms, pp. 38–45. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  42. Veinott, A.F.: Minumum concave cost solutions of Leontief substitution models of multi-facility inventory systems. Operations Research 17, 262–291 (1969)

    MATH  MathSciNet  Google Scholar 

  43. Wagelmans, A., van Hoesel, S.: Economic lot sizing: An O(n log n) algorithm that runs in linear time in the Wagner-Whitin case. Operations Research 40(S1), 145–156 (1992)

    MathSciNet  Google Scholar 

  44. Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Management Science 5, 89–96 (1958)

    Article  MathSciNet  Google Scholar 

  45. Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdependency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 97–106. Springer, Berlin (1998)

    Chapter  Google Scholar 

  46. Wemmerlöv, U.: A comparison of discrete single stage lot-sizing heuristics with special emphasis on rules based on the marginal cost principle. Engineering Costs and Production Economics 7, 45–53 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Fink Franz Rothlauf

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grahl, J., Minner, S., Rothlauf, F. (2008). Decomposition of Dynamic Single-Product and Multi-product Lotsizing Problems and Scalability of EDAs. In: Fink, A., Rothlauf, F. (eds) Advances in Computational Intelligence in Transport, Logistics, and Supply Chain Management. Studies in Computational Intelligence, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69390-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69390-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69024-5

  • Online ISBN: 978-3-540-69390-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics