Computational Tasks in Bronchoscope Navigation During Computer-Assisted Transbronchial Biopsy

  • Jarosław Bułat
  • Krzysztof Duda
  • Mirosław Socha
  • Paweł Turcza
  • Tomasz Zieliński
  • Mariusz Duplaga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5103)


The paper presents algorithmic solutions dedicated to computer navigation system which is to assist bronchoscope positioning during transbronchial needle-aspiration biopsy. The navigation exploits principle of on-line registration of real images coming from endoscope camera and virtual ones generated on the base of computed-tomography (CT) data of a patient. When these images are similar an assumption is made that the bronchoscope and virtual camera have approximately the same position and view direction. In the paper the following computational aspects are described: correction of camera lens distortion, fast approximate estimation of endoscope ego-motion, reconstruction of bronchial tree from CT data by means of their segmentation and its centerline calculation, virtual views generation, registration of real and virtual images via maximization of their mutual information and, finally, efficient parallel and network implementation of the navigation system which is under development.


Mutual Information Motion Estimation Compute Tomography Data Bronchial Tree Virtual Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bartz, D.: Virtual Endoscopy in Research and Clinical Practise. Eurographics - Computer Graphics Forum 24(1) (2005)Google Scholar
  2. 2.
    Mori, K., Deguchi, D., Sugiyama, J., et al.: Tracking of a Bronchoscope Using Epipolar Geometry Analysis and Intensity-Based Image Registration of Real and Virtual Endoscopic Images. Medical Image Analysis 6(3) (2002)Google Scholar
  3. 3.
    Sherbondy, A.J., Kiraly, A.P., et al.: Virtual Bronchoscopic Approach for Combining 3D CT and Endoscopic Video. In: Medical Imaging 2000, Proc. SPIE (2000)Google Scholar
  4. 4.
    Helferty, J.P., Higgins, W.E.: Combined Endoscopic Video Tracking and Virtual 3D CT Registration for Surgical Guidance. In: Proc. IEEE ICIP, pp. II-961–964 (2002)Google Scholar
  5. 5.
    Nagao, J., Mori, K., et al.: Fast and Accurate Bronchoscope Tracking Using Image Registration and Motion Prediction. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 551–558. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Deligianni, F., Chung, A., Yang, G.-Z.: Predictive Camera Tracking for Bronchoscope Simulation with CONDensation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 910–916. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Bricault, I., Ferretti, G., Cinquin, P.: Registration of Real and CT-Derived Virtual Bronchoscopic Images to Assist Transbronchial Biopsy. IEEE Trans. on Medical Imaging 17(5), 703–714 (1998)CrossRefGoogle Scholar
  8. 8.
    Deligianni, F., Chung, A., Yang, G.-Z.: pq-Space Based 2d/3D Registration for Endoscope Tracking. In: MICCAI 2003. LNCS, vol. 2878, pp. 311–318. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Twardowski, T., Zieliñski, T., Duda, K., Socha, M., Duplaga, M.: Fast estimation of broncho-fiberoscope egomotion for CT-guided transbronchial biopsy. In: IEEE Int. Conference on Image Processing ICIP-2006, Atlanta (2006)Google Scholar
  10. 10.
    Duda, K., Duplaga, M.: Automatic generation of a navigation path for virtual bronchoscopy. In: PAK, vol. 5bis, pp. 115–118 (2006) (in polish)Google Scholar
  11. 11.
    Duda, K., Zieliski, T., Socha, M., et al.: Navigation in bronchial tree based on motion estimation and mutual information. In: ICSES, Poland (2006)Google Scholar
  12. 12.
    Vijayan Asari, K., Kumar, S., Radhakrishnan, D.: A New Approach for Nonlinear Distortion Correction in Endoscopic Images Based on Least Squares Estimation. IEEE Trans. on Medical Imaging 18(4), 345–354 (1999)CrossRefGoogle Scholar
  13. 13.
    Helferty, J.P., Zhang, C., McLennan, G., Higgins, W.E.: Videoendoscopic Distortion Correction and Its Application to Virtual Guidance of Endoscopy. IEEE Trans. on Medical Imaging 20(7), 605–617 (2001)CrossRefGoogle Scholar
  14. 14.
    Kiraly, A.P., Helferty, et al.: Three-Dimensional Path Planning for Virtual Bronchoscopy. IEEE Trans. on Medical Imaging 23(9), 1365–1379 (2004)CrossRefGoogle Scholar
  15. 15.
    Bartz, D., Mayer, D., et al.: Hybrid segmentation and exploration of the human lungs. In: IEEE-Visualization-2003 (No. 03CH37496), pp. 177–184 (2003)Google Scholar
  16. 16.
    VTK – The Visualizarion ToolKit,
  17. 17.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21, 163–169 (1987)CrossRefGoogle Scholar
  18. 18.
    Tian, T.Y., Tomasi, C., Heeger, D.J.: Comparison of Approaches to Egomotion Computation. In: IEEE Conf. CVPR, pp. 315–320 (1996)Google Scholar
  19. 19.
    Daniilidis, K.: Fixation simplifies 3D Motion Estimation. Computer Vision and Image Understanding 68(2), 158–169 (1997)CrossRefGoogle Scholar
  20. 20.
    Zitova, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  21. 21.
    Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual information based registration of medical images: a survey. IEEE Trans. on Medical Imaging 22, 986–1004 (2003)CrossRefGoogle Scholar
  22. 22.
    BLAS (Basic Linear Algebra Subprograms), software library,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jarosław Bułat
    • 1
  • Krzysztof Duda
    • 1
  • Mirosław Socha
    • 1
  • Paweł Turcza
    • 1
  • Tomasz Zieliński
    • 2
  • Mariusz Duplaga
    • 3
  1. 1.Department of Measurement and InstrumentationAGH University of Science and TechnologyKrakówPoland
  2. 2.Department of TelecommunicationsAGH University of Science and TechnologyKrakówPoland
  3. 3.Collegium MedicumJagiellonian UniversityKrakówPoland

Personalised recommendations