Advertisement

Automatic Segmentation of Cardiac MRI Using Snakes and Genetic Algorithms

  • Gustavo Miranda Teixeira
  • Igor Ramalho Pommeranzembaum
  • Bernardo Lino de Oliveira
  • Marcelo Lobosco
  • Rodrigo Weber dos Santos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5103)

Abstract

In this work we study and implement techniques for the automatic segmentation of cardiac Magnetic Resonance Images. The methods are based on the active contours algorithm called Snakes, which are adapted and tailored to the specific task of automatic segmentation of the left ventricle of the heart in Magnetic Resonance Images. We propose a new external force to improve the convergence of the Snakes method. In addition, a genetic algorithm is used to find the best set of configuration parameters for the Snakes method. The algorithms are implemented in Java and threads are used to explore data parallelism on shared-memory machines. Tests are performed on 150 short-axis images acquired from two healthy volunteers. Preliminary results suggest the proposed methods are promising and with further development and validation may be used, for instance, for the automatic calculation of cardiac ejection fraction.

Keywords

image processing snakes genetic algorithms cardiac MRI 

References

  1. 1.
    Kühl, H.P., Schreckenberg, M., Rulands, D., Katoh, M., Schäfer, W., Schummers, G., Bücker, A., Hanrath, P., Franke, A.: High-resolution Transthoracic Real-Time Three-Dimensional Echocardiography: Quantitation of Cardiac Volumes and Function Using Semi-Automatic Border Detection and Comparison with Cardiac Magnetic Resonance Imaging. J. Am. Coll. Cardiol. 43, 2083–2090 (2004)CrossRefGoogle Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision V1(4), 321–331 (1987)Google Scholar
  3. 3.
    Xu, C., Prince, J.L.: Gradient Vector Flow: A New External Force for Snakes. In: IEEE Proc. of the Conference on Computer Vision and Pattern Recognition, pp. 66–71. IEEE Computer Society, Washigton (1997)Google Scholar
  4. 4.
    Forsyth, A.R.: Calculus of Variations. Dover, New York (1960)zbMATHGoogle Scholar
  5. 5.
    Xu, C., Prince, J.L.: Generalized Gradient Vector Flow External Forces for Active Contours. Signal Processing 71(2), 131–139 (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  7. 7.
    Eshelman, L.J., Schaffer, J.D.: Real-coded Genetic Algorithms and Interval-Schemata. In: Foundations of Genetic Algorithms-2, pp. 187–202. Morgan Kaufman Publishers, San Mateo (1993)Google Scholar
  8. 8.
    Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language, 4th edn. Prentice Hall PTR, Englewood Cliffs (2005)Google Scholar
  9. 9.
  10. 10.
    Doug, L.: Concurrent Programming in Java: Design Principles and Pattern, 2nd edn. Prentice Hall PTR, Englewood Cliffs (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gustavo Miranda Teixeira
    • 1
  • Igor Ramalho Pommeranzembaum
    • 1
  • Bernardo Lino de Oliveira
    • 1
  • Marcelo Lobosco
    • 1
  • Rodrigo Weber dos Santos
    • 1
  1. 1.Departamento de Ciência da ComputaçãoUniversidade Federal de Juiz de Fora (UFJF)Juiz de ForaBrasil

Personalised recommendations