Advertisement

Multi-scale Modelling of the Two-Dimensional Flow Dynamics in a Stationary Supersonic Hot Gas Expansion

  • Giannandrea Abbate
  • Barend J. Thijsse
  • Chris R. Kleijn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5102)

Abstract

A stationary hot gas jet supersonically expanding into a low pressure environment is studied through multi-scale numerical simulations.

A hybrid continuum-molecular approach is used to model the flow. Due to the low pressure and high thermodynamic gradients, the accuracy of continuum mechanics results are doubtful, while, because of its excessive time expenses, a full molecular method is not feasible. The results of the proposed hybrid continuum-molecular approach have been successfully validated against experimental data.

An important question for the full understanding of the processes governing the flow is addressed: the demonstration of an invasion of the supersonic part of the flow by background particles. Through the tracking of particles and collisions in the supersonic region it could be definitively proven that background particles are present in this region. We present a complete two dimensional picture of how the invading background particles distribute and collide with local particles into the supersonic region.

Keywords

Direct Simulation Monte Carlo Coupled Method Hybrid Method Rarefied Gas Flow Supersonic Expansion 

References

  1. 1.
    Cai, C., Boyd, I.D.: 3D Simulation of Plume Flows from a Cluster of Plasma Thrusters. In: 36th AIAA Plasmadynamics and Laser Conference, Toronto, Ontario, Canada, June 6-9, 2005, AIAA-2005-4662 (2005)Google Scholar
  2. 2.
    Gielen, J.W.A.M., Kessels, W.M.M., van de Sanden, M.C.M., Schram, D.C.: Effect of Substrate Conditions on the Plasma Beam Deposition of Amorphous Hydrogenated Carbon. J. Appl. Phys. 82, 2643 (1997)CrossRefGoogle Scholar
  3. 3.
    Engeln, R., Mazouffre, S., Vankan, P., Schram, D.C., Sadeghi, N.: Flow Dynamics and Invasion by Background Gas of a Supersonically Expanding Thermal Plasma. Plasma Sources Sci. Technol. 10, 595 (2001)CrossRefGoogle Scholar
  4. 4.
    Vankan, P., Mazouffre, S., Engeln, R., Schram, D.C.: Inflow and Shock Formation in Supersonic, Rarefied Plasma Expansions. Phys. Plasmas 12, 102–303 (2005)CrossRefGoogle Scholar
  5. 5.
    Selezneva, S.E., Boulos, M.I., van de Sanden, M.C.M., Engeln, R., Schram, D.C.: Stationary Supersonic Plasma Expansion: Continuum Fluid Mechanics Versus Direct Simulation Monte Carlo Method. J. Phys. D: Appl. Phys. 35, 1362 (2002)CrossRefGoogle Scholar
  6. 6.
    Gabriel, O., Colsters, P., Engeln, R., Schram, D.C.: Invasion of Molecules and Supersonic Plasma Expansion. In: Proc. 25th Int. Symph. Rarefied Gas Dynamics, S.Petersburg, Russia (2006)Google Scholar
  7. 7.
    Fenn, J.B., Anderson, J.B.: Rarefied Gas Dynamics. In: de Leeuw, J.H. (ed.), 2nd edn. Academic Press, New York (1966)Google Scholar
  8. 8.
    Campargue, R.: Aerodynamic Separation Effect on Gas and Isotope Mixtures Induced by Invasion of the Free Jet Shock Wave Structure. J. Chem. Phys. 52, 1795 (1970)CrossRefGoogle Scholar
  9. 9.
    Le Tallec, P., Mallinger, F.: Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes. Journal Computational Physics 136, 51 (1997)zbMATHCrossRefGoogle Scholar
  10. 10.
    Wu, J.S., Lian, Y.Y., Cheng., G., Koomullil, R.P., Tseng, K.C.: Development and Verification of a Coupled DSMC-NS Scheme Using Unstructured Mesh. Journal of Computational Physics 219, 579 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Schwartzentruber, T.E., Boyd, I.D.: A Hybrid Particle-Continuum Method Applied to Shock Waves. Journal of Computational Physics 215(2), 402 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Abbate, G., Thijsse, B.J., Kleijn, C.R.: An Adaptive Hybrid Navier-Stokes/DSMC Method for Transient and Steady-State Rarefied Gas Flows Simulations. Journal Computational Physics (submitted)Google Scholar
  13. 13.
    Abbate, G., Thijsse, B.J., Kleijn, C.R.: Coupled Navier-Stokes/DSMC Method for Transient and Steady-State Gas Flows. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4487, p. 842. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Abbate, G., Thijsse, B.J., Kleijn, C.R.: Validation of a Hybrid Navier-Stokes/DSMC Method for Multiscale Transient and Steady-State Gas Flows. special SMMS 2007 issue of International Journal Multiscale Computational Engineering 6(1), 1 (2008)CrossRefGoogle Scholar
  15. 15.
    Selezneva, S.E., Rajabian, M., Gravelle, D., Boulos, M.I.: Study of the Structure and Deviation From Equilibrium in Direct Current Supersonic Plasma Jets. J. Phys. D: Appl. Phys. 34(18), 2862 (2001)CrossRefGoogle Scholar
  16. 16.
    van de Sanden, M.C.M., de Regt, J.M., Jansen, G.M., van der Mullen, J.A.M., Schram, D.C., van der Sijde, B.: A Combined Thomson-Rayleigh Scattering Diagnostic Using an Intensified Photodiode Array. Rev. Sci. Instrum. 63, 3369 (1992)CrossRefGoogle Scholar
  17. 17.
    Bird, G.A.: Molecular Gas Dynamics and Direct Simulation Monte Carlo. Claredon Press Oxford Science (1998)Google Scholar
  18. 18.
    Wang, W.L., Boyd, I.D.: Continuum Breakdown in Hypersonic Viscous Flows. In: 40th AIAA Aerospace Sciences Meeting and Exhibit, January 14-17, 2002, Reno, NV (2002)Google Scholar
  19. 19.
    Ashkenas, H., Sherman, F.S.: Experimental Methods in Rarefied Gas Dynamics. In: de Leeuw, J.H. (ed.) Rarefied Gas Dynamics, vol. II, p. 84. Academic Press, New York (1965)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Giannandrea Abbate
    • 1
  • Barend J. Thijsse
    • 2
  • Chris R. Kleijn
    • 1
  1. 1.Dept. of Multi-Scale Physics & J.M.Burgers Centre for Fluid MechanicsDelft University of TechnologyDelftThe Netherlands
  2. 2.Dept. of Materials Science and EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations