Multiscale Models of Quantum Dot Based Nanomaterials and Nanodevices for Solar Cells

  • Alexander I. Fedoseyev
  • Marek Turowski
  • Ashok Raman
  • Qinghui Shao
  • Alexander A. Balandin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5102)


NASA future exploration missions and space electronic equipment require improvements in solar cell efficiency and radiation hardness. Novel nano-engineered materials and quantum-dot (QD) based photovoltaic devices promise to deliver more efficient, lightweight, radiation hardened solar cells and arrays, which will be of high value for the long term space missions. We describe the multiscale approach to the development of Technology Computer Aided Design (TCAD) simulation software tools for QD-based semiconductor devices, which is based on the drift – diffusion and hydrodynamic models, combined with the quantum-mechanical models for the QD solar cells.


Nanostructured solar cell quantum dot photovoltaic nanostructures hydrodynamics drift-diffusion multiscale computer-aided design intermediate band solar cells 


  1. 1.
    Balandin, A.A., Lazarenkova, O.L.: Mechanism for thermoelectric Fig.-of-merit enhancement in regimented quantum dot superlattices. App. Phys. Let. 82, 415 (2003)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Fedoseyev, A.I., Turowski, M., Wartak, M.S.: Kinetic and Quantum Models for Nanoelectronic and Optoelectronic Device Simulation. J. Nanoelectr. Optoelectr. 2, 234–256 (2007)CrossRefGoogle Scholar
  4. 4.
    Shao, Q., Balandin, A.A., Fedoseyev, A.I., Turowski, M.: Intermediate-band solar cells based on quantum dot supracrystals. App. Phys. Let. 91(16) (2007)Google Scholar
  5. 5.
    Fedoseyev, A.I., Kolobov, V., Arslanbekov, R., Przekwas, A.: Kinetic simulation tools for nano-scale semiconductor devices. Microelectronic Eng. 69, 577–586 (2003)CrossRefGoogle Scholar
  6. 6.
    Seto, M., Leduc, J.-V., Lammers, A.M.F.: Al-n-Si Double Schottky Photodiodes for Optical Storage Systems. In: Proc. ESSDERC 1997 (1997)Google Scholar
  7. 7.
    Fedoseyev, A.I., Bessonov, O.A.: Iterative solution for large linear systems for unstructured meshes with preconditioning by high order incomplete decomposition. Comput. Fluid Dynam. J. 10, 296 (2001)Google Scholar
  8. 8.
    Wesseling, P., Sonneveld, P.: Numerical experiments with a multiple grid and a preconditionned Lanczos type methods. Lecture Notes in Mathematics, vol. 771, pp. 543–562. Springer, Berlin (1980)Google Scholar
  9. 9.
    Saad, Y.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kershaw, D.S.: The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. J. Comput. Phys. 2, 43 (1978)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Schenk, O., Rllin, S., Hagemann, M.: Recent advances in sparse linear solver technology for semiconductor device simulation matrices. In: Proc. Int. Conf. Simulation of Semi. Processes and Devices, Boston, MA, USA, vol. 103 (2003)Google Scholar
  12. 12.
    Lazarenkova, O.L., Balandin, A.A.: Electron and photon energy spectra in a three-dimensional regimented quantum dot superlattice. Phys. Rev. 66, 245–319 (2002)Google Scholar
  13. 13.
    Balandin, A.A., Lazarenkova, O.L.: Miniband formation in a quantum dot crystal. J. App. Phys. 89, 5505 (2001)Google Scholar
  14. 14.
    Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics, Science, p. 387 (1980)Google Scholar
  15. 15.
    Fedoseyev, A.I., Turowski, M., Raman, A., Alles, M.L., Weller, R.A.: Multiscale Numerical Models for Simulation of Radiation Events in Semiconductor Devices. In: Bubak, et al. (eds.) ICCS 2008 part II. LNCS, vol. 5102, pp. 281–290. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexander I. Fedoseyev
    • 1
  • Marek Turowski
    • 1
  • Ashok Raman
    • 1
  • Qinghui Shao
    • 2
  • Alexander A. Balandin
    • 2
  1. 1.CFD Research Corporation (CFDRC)Huntsville
  2. 2.Nano-Device Laboratory, Department of Electrical EngineeringUniversity of California – RiversideRiverside

Personalised recommendations