Advertisement

Level-of-Detail Triangle Strips for Deforming Meshes

  • Francisco Ramos
  • Miguel Chover
  • Jindra Parus
  • Ivana Kolingerova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5102)

Abstract

Applications such as video games or movies often contain deforming meshes. The most-commonly used representation of these types of meshes consists in dense polygonal models. Such a large amount of geometry can be efficiently managed by applying level-of-detail techniques and specific solutions have been developed in this field. However, these solutions do not offer a high performance in real-time applications. We thus introduce a multiresolution scheme for deforming meshes. It enables us to obtain different approximations over all the frames of an animation. Moreover, we provide an efficient connectivity coding by means of triangle strips as well as a flexible framework adapted to the GPU pipeline. Our approach enables real-time performance and, at the same time, provides accurate approximations.

Keywords

Multiresolution Level of Detail GPU triangle strips deforming meshes 

References

  1. 1.
    DeHaemer, M., Zyda, J.: Simplification of objects rendered by polygonal approximations. Computer and Graphics 2(15), 175–184 (1991)CrossRefGoogle Scholar
  2. 2.
    Cignoni, P., Montani, C., Scopigno, R.: A comparison of mesh simplification methods. Computer and Graphics 1(22), 37–54 (1998)CrossRefGoogle Scholar
  3. 3.
    Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Computer Graphics and Applications 3(24), 24–35 (2001)CrossRefGoogle Scholar
  4. 4.
    Aaron, L., Dobkin, D., Sweldens, W., Schroder, P.: Multiresolution mesh morphing. In: SIGGRAPH, pp. 343–350 (1999)Google Scholar
  5. 5.
    Parus, J.: Morphing of meshes. Technical report, DCSE/TR-2005-02, University of West Bohemia (2005)Google Scholar
  6. 6.
    Kanai, T., Suzuki, H., Kimura, F.: Metamorphosis of arbitrary triangular meshes. IEEE Computer Graphics and Applications 20, 62–75 (2000)CrossRefGoogle Scholar
  7. 7.
    Evans, F., Skiena, S., Varshney, A.: Optimizing triangle srips for fast rendering. In: IEEE Visualization, pp. 319–326 (1996)Google Scholar
  8. 8.
    El-Sana, J., Azanli, E., Varshney, A.: Skip strips: Maintaining triangle strips for view-dependent rendering. In: Visualization, pp. 131–137 (1999)Google Scholar
  9. 9.
    Velho, L., Figueredo, L.H., Gomes, J.: Hierachical generalized triangle strips. The Visual Computer 15(1), 21–35 (1999)CrossRefGoogle Scholar
  10. 10.
    Stewart, J.: Tunneling for triangle strips in continuous level-of-detail meshes. In: Graphics Interface, pp. 91–100 (2001)Google Scholar
  11. 11.
    Shafae, M., Pajarola, R.: Dstrips: Dynamic triangle strips for real-time mesh simplification and rendering. In: Pacific Graphics Conference, pp. 271–280 (2003)Google Scholar
  12. 12.
    Belmonte, O., Remolar, I., Ribelles, J., Chover, M., Fernandez, M.: Efficient use connectivity information between triangles in a mesh for real-time rendering. Computer Graphics and Geometric Modelling 20(8), 1263–1273 (2004)Google Scholar
  13. 13.
    Ramos, F., Chover, M.: Lodstrips: Level of detall strips. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 107–114. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Mohr, A., Gleicher, M.: Deformation sensitive decimation. In: Technical Report (2003)Google Scholar
  15. 15.
    Shamir, A., Pascucci, V.: Temporal and spatial levels of detail for dynamic meshes. In: Symposium on Virtual Reality Software and Technology, pp. 77–84 (2000)Google Scholar
  16. 16.
    Decoro, C., Rusinkiewicz, S.: Pose-independent simplification of articulated meshes. In: Symposium on Interactive 3D Graphics (2005)Google Scholar
  17. 17.
    Kircher, S., Garland, M.: Progressive multiresolution meshes for deforming surfaces. In: EUROGRAPHICS, pp. 191–200 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Francisco Ramos
    • 1
  • Miguel Chover
    • 1
  • Jindra Parus
    • 2
  • Ivana Kolingerova
    • 2
  1. 1.Universitat Jaume ICastellonSpain
  2. 2.University of West BohemiaPilsenCzech Republic

Personalised recommendations