Skip to main content

Tumor Targeting Using Canine Parvovirus Nanoparticles

  • Chapter
Viruses and Nanotechnology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 327))

Advances in genetics, proteomics and cellular and molecular biology are being integrated and translated to develop effective methods for the prevention and control of cancer. One such combined effort is to create multifunctional nanodevices that will specifically recognize tumors and thus enable early diagnosis and provide targeted treatment of this disease. Viral particles are being considered for this purpose since they are inherently nanostructures with well-defined geometry and uniformity, ideal for displaying molecules in a precise spatial distribution at the nanoscale level and subject to greater structural control. Viruses are presumably the most efficient nanocontainer for cellular delivery as they have naturally evolved mechanisms for binding to and entering cells. Virus-based systems typically require genetic or chemical modification of their surfaces to achieve tumor-specific interactions. Interestingly, canine parvovirus (CPV) has a natural affinity for transferrin receptors (TfRs) (both of canine and human origin) and this property could be harnessed as TfRs are over-expressed by a variety of human tumor cells. Since TfR recognition relies on the CPV capsid protein, we envisioned the use of virus or its shells as tumor targeting agents. We observed that derivatization of CPV virus-like particles (VLPs) with dye molecules did not impair particle binding to TfRs or internalization into human tumor cells. Thus CPV-based VLPs with a natural tropism for TfRs hold great promise in the development of novel nanomaterial for delivery of a therapeutic and/or genetic cargo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAV::

Adeno-associated virus

CEA::

Carcinoembryonic antigen

CPMV::

Cowpea mosaic virus

CPV::

Canine parvovirus

DMSO:

Dimethyl sulfoxide

IL-1β::

Interleukin-1 beta

IL-6::

Interleukin-6

NHS::

N-hydroxysuccinimide

SEC::

Size-exclusion chromatography

Tf::

Transferrin

TfR::

Transferrin receptor

TNF::

Tumor necrosis factor

VNP::

Viral nanoparticles

VLP::

Virus-like particle

References

  • American Cancer Society (2006) Cancer facts and figures, 2006. www.cancer.org/downloads/ STT/CAFF2006PWSecured.pdf. American Cancer Society, Atlanta, GA. Cited 14 April 2008

  • Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15:102–111

    Article  PubMed  CAS  Google Scholar 

  • Bashir T, Rommelaere J, Cziepluch C (2001) In vivo accumulation of cyclin A and cellular replication factors in autonomous parvovirus minute virus of mice-associated replication bodies. J Virol 75:4394–4398

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Riefke B, Ebert B, et al (2000) Macromolecular contrast agents for optical imaging of tumors: comparison of indotricarbocyanine-labeled human serum albumin and transferrin. Photochem Photobiol 72:234–241

    Article  PubMed  CAS  Google Scholar 

  • Ben-Gary H, McKinney RL, Rosengart T, et al (2002) Systemic interleukin-6 responses following administration of adenovirus gene transfer vectors to humans by different routes. Mol Ther 6:287–297

    Article  PubMed  CAS  Google Scholar 

  • Bloom ME, Young NS (2001) Parvoviruses. In: Knipe DM Howley PM (eds) Fields virology, 4th edn., vol. 2. Lippincott Williams and Wilkins, Philadelphia, pp 2361–2379

    Google Scholar 

  • Brandenburger A, Legendre D, Avalosse B, Rommelaere J (1990) NS-1 and NS-2 proteins may act synergistically in the cytopathogenicity of parvovirus MVMp. Virology 174:576–584

    Article  PubMed  CAS  Google Scholar 

  • Bridges KR, Smith BR (1985) Discordance between transferrin receptor expression and susceptibility to lysis by natural killer cells. J Clin Invest 76:913–918

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Anderson SM, Young NS (1993) Erythrocyte P antigen: cellular receptor for B19 par-vovirus. Science 262:114–117

    Article  PubMed  CAS  Google Scholar 

  • Brown WL, Mastico RA, Wu M, et al (2002) RNA bacteriophage capsid-mediated drug delivery and epitope presentation. Intervirology 45:371–380

    Article  PubMed  CAS  Google Scholar 

  • Brumfield S, Willits D, Tang L, et al (2004) Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. J Gen Virol 85:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Caillet-Fauquet P, Perros M, Brandenburger A, et al (1990) Programmed killing of human cells by means of an inducible clone of parvoviral genes encoding non-structural proteins. EMBO J 9:2989–2995

    PubMed  CAS  Google Scholar 

  • Chatterji A, Ochoa W, Shamieh L, et al (2004) Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus. Bioconjug Chem 15:807–813

    Article  PubMed  CAS  Google Scholar 

  • Christ M, Louis B, Stoeckel F, et al (2000) Modulation of the inflammatory properties and hepa-totoxicity of recombinant adenovirus vectors by the viral E4 gene products. Hum Gene Ther 11:415–427

    Article  PubMed  CAS  Google Scholar 

  • Cotmore SF, Tattersall P (1987) The autonomously replicating parvoviruses of vertebrates. Adv Virus Res 33:91–174

    Article  PubMed  CAS  Google Scholar 

  • Deleu L, Pujol A, Faisst S, Rommelaere J (1999) Activation of promoter P4 of the autonomous parvovirus minute virus of mice at early S phase is required for productive infection. J Virol 73:3877–3885

    PubMed  CAS  Google Scholar 

  • Doronina SO, Toki BE, Torgov MY, et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784

    Article  PubMed  CAS  Google Scholar 

  • Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875

    Article  PubMed  CAS  Google Scholar 

  • Edwards BK, Brown ML, Wingo PA, et al (2005) Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst 97:1407–1427

    Article  PubMed  Google Scholar 

  • Eichwald V, Daeffler L, Klein M,, et al (2002) The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells. J Virol 76:10307–10319

    Article  PubMed  CAS  Google Scholar 

  • Engler H, Machemer T, Philopena J, et al (2004) Acute hepatotoxicity of oncolytic adenoviruses in mouse models is associated with expression of wild-type E1a and induction of TNF-alpha. Virology 328:52–61

    Article  PubMed  CAS  Google Scholar 

  • Geletneky K, Herrero YCM, Rommelaere J, Schlehofer JR (2005) Oncolytic potential of rodent parvoviruses for cancer therapy in humans: a brief review. J Vet Med B Infect Dis Vet Public Health 52:327–330

    PubMed  CAS  Google Scholar 

  • Gomme PT, McCann KB, Bertolini J (2005) Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 10:267–273

    Article  PubMed  CAS  Google Scholar 

  • Goren D, Horowitz AT, Tzemach D, et al (2000) Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res 6:1949–1957

    PubMed  CAS  Google Scholar 

  • Green NK, Herbert CW, Hale SJ, et al (2004) Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther 11:1256–1263

    Article  PubMed  CAS  Google Scholar 

  • Gupta SS, Kuzelka J, Singh P, et al (2005) Accelerated bioorthogonal conjugation: a practical method for ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconj Chem 16:1572–1579

    Article  CAS  Google Scholar 

  • Hashizume H, Baluk P, Morikawa S, et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    PubMed  CAS  Google Scholar 

  • Higginbotham JN, Seth P, Blaese RM, Ramsey WJ (2002) The release of inflammatory cytokines from human peripheral blood mononuclear cells in vitro following exposure to adenovirus variants and capsid. Hum Gene Ther 13:129–141

    Article  PubMed  CAS  Google Scholar 

  • Hogemann-Savellano D, Bos E, Blondet C, et al (2003) The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5:495–506

    PubMed  Google Scholar 

  • Hueffer K, Parrish CR (2003) Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol 6:392–398

    Article  PubMed  CAS  Google Scholar 

  • Inoue T, Cavanaugh PG, Steck PA, et al (1993) Differences in transferrin response and numbers of transferrin receptors in rat and human mammary carcinoma lines of different metastatic potentials. J Cell Physiol 156:212–217

    Article  PubMed  CAS  Google Scholar 

  • LeCesne A, Dupressoir T, Janin N, et al (1993) Intra-lesional administration of a live virus, parvovirus H-1(PVH-1) in cancer patients: a feasibility study. Proc Ann Meet Am Soc Clin Oncol 12:297

    Google Scholar 

  • Lee GK, Maheshri N, Kaspar B, Schaffer DV (2005) PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnol Bioeng 92:24–34

    Article  PubMed  CAS  Google Scholar 

  • Legrand C, Rommelaere J, Caillet-Fauquet P (1993) MVM(p) NS-2 protein expression is required with NS-1 for maximal cytotoxicity in human transformed cells. Virology 195:149–155

    Article  PubMed  CAS  Google Scholar 

  • Lorson C, Pintel DJ (1997) Characterization of the minute virus of mice P38 core promoter elements. J Virol 71:6568–6575

    PubMed  CAS  Google Scholar 

  • Lu Y, Sega E, Leamon CP, Low PS (2004) Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv Drug Deliv Rev 56:1161–1176

    Article  PubMed  CAS  Google Scholar 

  • Maheshri N, Koerber JT, Kaspar BK, Schaffer DV (2006) Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24:198–204

    Article  PubMed  CAS  Google Scholar 

  • Manno CS, Chew AJ, Hutchison S, et al (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101:2963–2972

    Article  PubMed  CAS  Google Scholar 

  • Manno CS, Arruda VR, Pierce GF, et al (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342–347

    Article  PubMed  CAS  Google Scholar 

  • Mar Vista Animal Medical Center (n.d.) The canine parvovirus information center. http://www. marvistavet.com/html/body_canine_parvovirus.html. Cited 9 April 2008

  • Maxfield FR, McGraw TE (2004) Endocytic recycling. Nat Rev Mol Cell Biol 5:121–132

    Article  PubMed  CAS  Google Scholar 

  • McGraw TE, Greenfield L, Maxfield FR (1987) Functional expression of the human transferrin receptor cDNA in Chinese hamster ovary cells deficient in endogenous transferrin receptor. J Cell Biol 105:207–214

    Article  PubMed  CAS  Google Scholar 

  • Moskalenko M, Chen L, van Roey M, et al (2000) Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol 74:1761–1766

    Article  PubMed  CAS  Google Scholar 

  • Muruve DA, Cotter MJ, Zaiss AK, et al (2004) Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol 78:5966–5972

    Article  PubMed  CAS  Google Scholar 

  • Muzyczka N, Berns KI (2001) Parvoviridae: the viruses and their replication. In: Knipe DM Howley PM (eds) Fields virology, 4th edn., vol. 2. Lippincott Williams and Wilkins, Philadelphia, pp 2327–2359

    Google Scholar 

  • Nagayasu A, Uchiyama K, Kiwada H (1999) The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 40:75–87

    Article  PubMed  CAS  Google Scholar 

  • National Cancer Institute (2007) Defining cancer. www.cancer.gov/cancertopics/what-is-cancer, NCI, Bethesda, MD. Cited 14 April 2008

  • Olivier JC (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2:108–119

    Article  PubMed  Google Scholar 

  • Ozawa K, Ayub J, Kajigaya S, et al (1988) The gene encoding the nonstructural protein of B19 (human) parvovirus may be lethal in transfected cells. J Virol 62:2884–2889

    PubMed  CAS  Google Scholar 

  • Parker JS, Parrish CR (2000) Cellular uptake and infection by canine parvovirus involves rapid dynamin-regulated clathrin-mediated endocytosis, followed by slower intracellular trafficking. J Virol 74:1919–1930

    Article  PubMed  CAS  Google Scholar 

  • Parker JS, Murphy WJ, Wang D, et al (2001) Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol 75:3896–3902

    Article  PubMed  CAS  Google Scholar 

  • Parker SF, Felzien LK, Perkins ND, et al (1997) Distinct domains of adenovirus E1A interact with specific cellular factors to differentially modulate human immunodeficiency virus transcription. J Virol 71:2004–2012

    PubMed  CAS  Google Scholar 

  • Parrish CR (1995) Pathogenesis of feline panleukopenia virus and canine parvovirus. Baillieres Clin Haematol 8:57–71

    Article  PubMed  CAS  Google Scholar 

  • Peden CS, Burger C, Muzyczka N, Mandel RJ (2004) Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 78:6344–6359

    Article  PubMed  CAS  Google Scholar 

  • Perros M, Deleu L, Vanacker JM, et al (1995) Upstream CREs participate in the basal activity of minute virus of mice promoter P4 and in its stimulation in ras-transformed cells. J Virol 69:5506–5515

    PubMed  CAS  Google Scholar 

  • Qian Z, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharm Rev 54:561–587

    Article  PubMed  CAS  Google Scholar 

  • Reddy LH (2005) Drug delivery to tumours: recent strategies. J Pharm Pharmacol 57:1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Reddy VS, Natarajan P, Okerberg Bet al (2001) Virus Particle Explorer (VIPER), a website for virus capsid structures and their computational analyses. J Virol 75:11943–11947

    Article  PubMed  CAS  Google Scholar 

  • Reed AP, Jones E V, Miller TJ (1988) Nucleotide sequence and genome organization of canine parvovirus. J Virol 62:266–276

    PubMed  CAS  Google Scholar 

  • Richter M, Zhang H (2005) Receptor-targeted cancer therapy. DNA Cell Biol 24:271–282

    Article  PubMed  CAS  Google Scholar 

  • Ries LAG, Melbert D, Krapcho M, Mariotto A, Miller BA, Feuer EJ, Clegg L, Horner MJ, Howlader N, Eisner MP, Reichman M, Edwards BK (eds) SEER Cancer Statistics Review, 1975–2004, National Cancer Institute. Bethesda, MD. http://seer.cancer.gov/csr/1975_2004/, based on November 2006 SEER data submission, posted to the SEER web site, 2007. Cited 14 April 2008

  • Rommelaere J, Cornelis JJ (1991) Antineoplastic activity of parvoviruses. J Virol Methods 33:233–251

    Article  PubMed  CAS  Google Scholar 

  • Rommelaere J, Cornelis JJ (2001) Autonomous parvoviruses. In: Hernaiz Driever P, Rabkin SD (eds) Replication-competent viruses for cancer therapy, vol. 22. Kargel, Basel, pp 100–129

    Chapter  Google Scholar 

  • Rommelaere J, Giese N, Cziepluch C, Cornelis JJ (2005) Parvoviruses as anticancer agents. In: Sinkovics JG, Horvath JC (eds) Marcel Dekkar, New York, pp 627–675

    Google Scholar 

  • Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90

    Article  PubMed  Google Scholar 

  • Ryschich E, Huszty G, Knaebel HP, et al (2004) Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. Eur J Cancer 40:1418–1422

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Yamauchi N, Takahashi M, et al (2000) In vivo gene delivery to tumor cells by transfer-rin-streptavidin-DNA conjugate. FASEB J 14:2108–2118

    Article  PubMed  CAS  Google Scholar 

  • Schlehofer JR, Rentrop M, Mannel DN (1992) Parvoviruses are inefficient in inducing interferon-beta, tumor necrosis factor-alpha, or interleukin-6 in mammalian cells. Med Microbiol Immunol (Berl) 181:153–164

    Article  CAS  Google Scholar 

  • Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66:511–548

    Article  PubMed  CAS  Google Scholar 

  • Siegl G, Bates RC, Berns KI, et al (1985) Characteristics and taxonomy of Parvoviridae. Intervirology 23:61–73

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Destito G, Schneemann A, Manchester M (2006) Canine parvovirus-like particles, a novel nanomaterial for tumor targeting. J Nanobiotechnology 4:2

    Article  PubMed  CAS  Google Scholar 

  • Spegelaere P, van Hille B, Spruyt N, et al (1991) Initiation of transcription from the minute virus of mice P4 promoter is stimulated in rat cells expressing a c-Ha-ras oncogene. J Virol 65:4919–4928

    PubMed  CAS  Google Scholar 

  • Spicer J, Harper P (2005) Targeted therapies for non-small cell lung cancer. Int J Clin Pract 59:1055–1062

    Article  PubMed  CAS  Google Scholar 

  • Spragg DD, Alford DR, Greferath R, et al (1997) Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc Natl Acad Sci U S A 94:8795–8800

    Article  PubMed  CAS  Google Scholar 

  • Suikkanen S, Saajarvi K, Hirsimaki J, et al (2002) Role of recycling endosomes and lysosomes in dynein-dependent entry of canine parvovirus. J Virol 76:4401–4411

    Article  PubMed  CAS  Google Scholar 

  • Sun JY, Anand-Jawa V, Chatterjee S, Wong KK (2003) Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 10:964–976

    Article  PubMed  CAS  Google Scholar 

  • Tabata Y, Murakami Y, Ikada Y (1998) Tumor accumulation of poly(vinyl alcohol) of different sizes after intravenous injection. J Control Release 50:123–133

    Article  PubMed  CAS  Google Scholar 

  • Toolan HW, Saunders EL, Southam CM, et al (1965) H-1 virus viremia in the human. Proc Soc Exp Biol Med 119:711–715

    PubMed  CAS  Google Scholar 

  • Tsao J, Chapman MS, Agbandje M, et al (1991) The three-dimensional structure of canine parvovirus and its functional implications. Science 251:1456–1464

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Kaltgrad E, Lin T, et al (2002a) Natural supramolecular building blocks: wild-type cow-pea mosaic virus. Chem Biol 9:805–811

    Article  CAS  Google Scholar 

  • Wang Q, Lin T, Johnson J, Finn M (2002b) Natural supramolecular building blocks: cysteine-added mutants of cowpea mosaic virus. Chem Biol 9:813–819

    Article  CAS  Google Scholar 

  • Wang Q, Chan TR, Hilgraf R, et al (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 125:3192–3193

    Article  PubMed  CAS  Google Scholar 

  • WHO (2003) World cancer report. World Health Organization, Geneva

    Google Scholar 

  • Young LS, Searle PF, Onion D, Mautner V (2006) Viral gene therapy strategies: from basic science to clinical application. J Pathol 208:299–318

    Article  PubMed  CAS  Google Scholar 

  • Yuan W, Parrish CR (2001) Canine parvovirus capsid assembly and differences in mammalian and insect cells. Virology 279:546–557

    Article  PubMed  CAS  Google Scholar 

  • Zalipsky S, Mullah N, Harding JA, et al (1997) Poly(ethylene glycol)-grafted liposomes with oligopeptide or oligosaccharide ligands appended to the termini of the polymer chains. Bioconjug Chem 8:111–118

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, P. (2009). Tumor Targeting Using Canine Parvovirus Nanoparticles. In: Manchester, M., Steinmetz, N.F. (eds) Viruses and Nanotechnology. Current Topics in Microbiology and Immunology, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69379-6_6

Download citation

Publish with us

Policies and ethics