Skip to main content

Chemical Modification of Viruses and Virus-Like Particles

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 327))

Protein capsids derived from viruses may be modified by methods, generated, isolated, and purified on large scales with relative ease. In recent years, methods for their chemical derivatization have been employed to broaden the properties and functions accessible to investigators desiring monodisperse, atomic-resolution structures on the nanometer scale. Here we review the reactions and methods used in these endeavors, including the modification of lysine, cysteine, and tyrosine side chains, as well as the installation of unnatural amino acids, with particular attention to the special challenges imposed by the polyvalency and size of virus-based scaffolds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CCMV::

Cowpea chlorotic mottle virus

CPMV::

Cowpea mosaic virus

DMSO::

Dimethyl sulfoxide

EDC::

1-Ethyl-3-(3-dimethyllaminopropyl)carb odiimide hydrochloride

HBA::

Hepatitis B virus

HSP::

Heat shock protein

MjHSP::

Methanococcus jannaschii heat shock protein

MMPP::

Magnesium monoper-oxyphthalate

MRI::

Magnetic resonance imaging

NHS::

N-hydroxysuccinimide

NɷV::

Nudaurelia capensis ɷ virus

RNA::

Ribonucleic acid

TMV::

Tobacco mosaic virus

TYMV::

Turnip yellow mosaic virus

UV::

Ultraviolet

VNP::

Viral nanoparticles

VLP:

Virus-like particle

References

  • Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) A comparative study of bioortho-gonal reactions with azides. ACS Chem Biol 1:644–648

    Article  PubMed  CAS  Google Scholar 

  • Amini F, Denison C, Lin H-J, Kuo L, Kodadek T (2003) Using oxidative crosslinking and proximity labeling to quantitatively characterize protein-protein and protein-peptide complexes. Chem Biol 10:1115–1127

    Article  PubMed  CAS  Google Scholar 

  • Antos JM, Francis MB (2004) Selective tryptophan modification with rhodium carbenoids in aqueous solution. J Am Chem Soc 126:10256

    Article  PubMed  CAS  Google Scholar 

  • Antos JM, Francis MB (2006) Transition metal catalyzed methods for site-selective protein modification. Curr Opin Chem Biol 10:253–262

    Article  PubMed  CAS  Google Scholar 

  • Ashcroft AE, Lago H, Macedo JM et al. (2005) Engineering thermal stability in RNA phage capsids via disulphide bonds. J Nanosci Nanotech 5:2034–20418

    Article  CAS  Google Scholar 

  • Barnhill H, Reuther R, Ferguson PL, Dreher TW, Wang Q (2007) Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconj Chem 18:852–859

    Article  CAS  Google Scholar 

  • Blum AS et al. (2004) Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett 4:867–870

    Article  CAS  Google Scholar 

  • Blum AS et al. (2005) An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small 1:702–706

    Article  PubMed  CAS  Google Scholar 

  • Blum AS et al. (2006) Templated self-assembly of quantum dots from aqueous solution using protein scaffolds. Nanotechnology 17:5073–5079

    Article  CAS  Google Scholar 

  • Bothner B, Schneemann A, Marshall D et al. (1999) Crystallographically identical virus capsids display different properties in solution. Nat Struct Biol 6:114–116

    Article  PubMed  CAS  Google Scholar 

  • Bothner B, Taylor D, Jun B et al. (2005) Maturation of a tetravirus capsid alters the dynamic properties and creates a metastable complex. Virology 334:17–27

    Article  PubMed  CAS  Google Scholar 

  • Broo K, Wei J, Marshall D et al. (2001) Viral capsid mobility: a dynamic conduit for inactivation. Proc Nat Acad Sci U S A 98:2274–2277

    Article  CAS  Google Scholar 

  • Brown KC, Kodadek T (2001) Protein cross-linking mediated by metal ion complexes. Metal Ions Biol Sys 38:351–384

    CAS  Google Scholar 

  • Bruening GE, Agrawal HO (1967) Infectivity of a mixture of cowpea mosaic virus ribonucleopro-tein components. Virology 32:306–320

    Article  PubMed  CAS  Google Scholar 

  • Canady MA, Larson SB, Day J, McPherson A (1996) Crystal structure of turnip yellow mosaic virus. Nat Struct Biol 3:771–781

    Article  PubMed  CAS  Google Scholar 

  • Chan TR, Hilgraf R, Sharpless KB, Folkin VV (2004) Polytriazoles as copper(I)-stabilizing lig-ands in catalysis. Org Lett 6:2853

    Article  PubMed  CAS  Google Scholar 

  • Chatterji A, Ochoa WF, Paine F et al. (2004a) New addresses on an addressable virus nanoblock uniquely reactive lys residues on cowpea mosaic virus. Chem Biol 11:855–863

    Article  CAS  Google Scholar 

  • Chatterji A, Ochoa W, Shamieh L et al. (2004b) Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus. Bioconj Chem 15:807–813

    Article  CAS  Google Scholar 

  • Chatterji A, Ochoa WF, Ueno T, Lin T, Johnson JE (2005) A virus-based nanoblock with tunable electrostatic properties. Nano Lett 5:597–602

    Article  PubMed  CAS  Google Scholar 

  • Cheung CL, Camarero JA, Woods BW et al. (2003) Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc 125:6848–6849

    Article  PubMed  CAS  Google Scholar 

  • Cheung CL, Chung SW, Chatterji A et al. (2006) Physical controls on directed virus assembly at nanoscale chemical templates. J Am Chem Soc 128:10801–10807

    Article  PubMed  CAS  Google Scholar 

  • Chillon M, Lee JH, Fasbender A, Welsh MJ (1998) Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther 5:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC, Watson JD (1956) Structure of small viruses. Nature 177:473–475

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard K, Uttenthal A, Jones TD et al. (1997) Plant-derived vaccine protects target animals against a viral disease. Nat Biotech 15:248–252

    Article  CAS  Google Scholar 

  • Dessens JT, Lomonossoff GP (1993) Cauliflower mosaic 35S promoter-controlled DNA copies of cowpea mosaic virus RNAs are infectious on plants. J Gen Virol 74:889–892

    Article  PubMed  CAS  Google Scholar 

  • Douglas T (2003) Materials science. A bright bio-inspired future. Science 299:1192–1193

    Article  PubMed  CAS  Google Scholar 

  • Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155

    Article  CAS  Google Scholar 

  • Douglas T, Young M (1999) Virus particles as templates for materials synthesis. Adv Mater 11:679–681

    Article  CAS  Google Scholar 

  • Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875

    Article  PubMed  CAS  Google Scholar 

  • Douglas T, Dickson DPE, Betteridge S et al. (1995) Synthesis and structure of an iron(III) sulfide-ferritin bioinorganic nanocomposite. Science 269:54–57

    Article  PubMed  CAS  Google Scholar 

  • Douglas T, Strable E, Willits D et al. (2002) Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater 14:415–418

    Article  CAS  Google Scholar 

  • Falkner JC, Turner ME, Bosworth JK et al. (2005) Virus crystals as nanocomposite scaffolds. J Am Chem Soc 127:5274–5275

    Article  PubMed  CAS  Google Scholar 

  • Flenniken ML, Willits DA, Brumfield S, Young MJ, Douglas T (2003) The small heat shock protein cage from Methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett 3:1573–1576

    Article  CAS  Google Scholar 

  • Flenniken ML, Willits DA, Harmsen AL et al. (2006) Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 13:161–170

    Article  PubMed  CAS  Google Scholar 

  • Gillitzer E, Willits D, Young M, Douglas T (2002) Chemical modification of a viral cage for multivalent presentation. Chem Commun 2390–2391

    Google Scholar 

  • Gillitzer E, Suci PA, Young Mark J, Douglas ES (2006) Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly. Small 2:962–966

    Article  PubMed  CAS  Google Scholar 

  • Golmohammadi R, Valegard K, Fridborg K, Liljas L (1993) The redefined structure of bacteri-ophage MS2 at 2.8A resolution. J Mol Biol 234:620–639

    Article  PubMed  CAS  Google Scholar 

  • Golmohammadi R, Fridborg K, Bundule M, Liljas L (1996) The crystal structure of bacteriophage Q beta at 3.5A resolution. Structure 4:543–554

    Article  PubMed  CAS  Google Scholar 

  • Granier T, Gallois B, Dautant A, Estaintot BLD, Precigoux G (1997) Comparison of the structures of the cubic and tetragonal forms of horse-spleen apoferritin. Acta Cryst D 53:580–587

    Article  CAS  Google Scholar 

  • Hermanson GT (1991) Bioconjugate techniques. Academic Press, San Diego

    Google Scholar 

  • Hooker JM, Kovacs EW, Francis MB (2004) Interior surface modification of bacteriophage MS2. J Am Chem Soc 126:3718–3719

    Article  PubMed  CAS  Google Scholar 

  • Juhl SB, Chan EP, Ha YH et al. (2006) Assembly of Wiseana iridovirus: viruses for colloidal photonic crystals. Adv Func Mater 16:1086–1094

    Article  CAS  Google Scholar 

  • Kiick KL, Tirrell DA (2000) Protein engineering by in vivo incorporation of non-natural amino acids: control of incorporation of methioonine analogues by methionyl tRNA synthetase. Tetrahedron 56:9487–9493

    Article  CAS  Google Scholar 

  • Kiick KL, Van Hest JCM, Tirrell DA (2000) Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew Chem Int Ed Engl 39:2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Kiick KL, Weberskirch R, Tirrell DA (2001) Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett 502:25–30

    Article  PubMed  CAS  Google Scholar 

  • Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A 99:19–24

    Article  PubMed  CAS  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599

    Article  PubMed  CAS  Google Scholar 

  • Klem MT, Young M, Douglas T (2005a) Biomimetic magnetic nanoparticle. Mater Today 8:28–37

    Article  CAS  Google Scholar 

  • Klem MT, Willits D, Solis DJ et al. (2005b) Bio-inspired synthesis of protein-encapsulated CoPt nanoparticles. Adv Func Mater 15:1489–1494

    Article  CAS  Google Scholar 

  • Kuhn RJ, Zhang W, Rossman MG et al. (2002) Structure of dengue virus: implications for flavivi-rus organization, maturation, and fusion. Cell 108:717–725

    Article  PubMed  CAS  Google Scholar 

  • Lewis WG, Magallon FG, Fokin V V, Finn MG (2004) Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. J Am Chem Soc 126:9152–9153

    Article  PubMed  CAS  Google Scholar 

  • Liepold LO, Revis J, Allen M et al. (2005) Structural transitions in cowpea chlorotic mottle virus (CCMV). Phys Biol 2:S166–S172

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Johnson JE (2003) Structure of picorna-like plant viruses: implications and applications. Adv Virus Res 62:167–239

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Porta C, Lomonossoff G, Johnson JE (1996) Structure-based design of peptide presentation on a viral surface: the crystal structure of a plant/animal virus chimera at 2.8.ANG resolution. Fold Des 1:179–187

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Chen Z, Usha R et al. (1999) The refined crystal structure of cowpea mosaic virus at 2.8 Å resolution. Virology 265:20–34

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Böker A, He J et al. (2005) Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434:55–59

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Lomonossoff GP (2002) Agroinfection as a rapid method for propagating Cowpea mosaic virus-based constructs. J Virol Methods 105:343–348

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Cañizares MC, Monger W et al. (2005) Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. Vaccine 23:1788–1792

    Article  PubMed  CAS  Google Scholar 

  • Lomonossoff GP (1996) Modified plant viruses as vectors of heterologous peptides and use as animal vaccines. In: PCT Int. Appl. Axis Genetics Ltd., UK

    Google Scholar 

  • Lomonossoff GP, Hamilton WDO (1999) Cowpea mosaic virus-based vaccines. Curr Topics Microbiol Immun 240:177–189

    CAS  Google Scholar 

  • Lomonossoff GP, Johnson JE (1991) The synthesis and structure of comovirus capsids. Prog Biophys Mol Biol 55:107–137

    Article  PubMed  CAS  Google Scholar 

  • Lomonossoff GP, Shanks M (1983) The nucleotide sequence of cowpea mosaic virus B RNA. EMBO J 2:2253–2258

    PubMed  CAS  Google Scholar 

  • Mahal LK, Yarema KJ, Bertozzi CR (1997) Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276:1125–1128

    Article  PubMed  CAS  Google Scholar 

  • Marlow SA, Delgado C, Neale D, Francis GE (1999) ViraMASC: a biologically optimized pegyla-tion technology to target adenovirus to tumors. Proc Int Symp Controlled Release Bioact Mater 26:555–556

    Google Scholar 

  • Martin CS et al. (2001) Combined EM/X-ray imagining yields a quasi-atomic model of the adeno-virus-related bacteriophage PRD1 and shows key capsid and membrane interactions. Structure 9:917–930

    Article  PubMed  CAS  Google Scholar 

  • McFarland JM, Francis MB (2005) Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. J Am Chem Soc 127:13490–13491

    Article  PubMed  CAS  Google Scholar 

  • Medintz IL, Sapsford KE, Konnert JH et al. (2005) Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir 21:5501–5510

    Article  PubMed  CAS  Google Scholar 

  • Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991) Synthesis of inorganic nano-phase materials in supramolecular protein cages. Nature 349:684–687

    Article  CAS  Google Scholar 

  • Meunier S, Strable E, Finn MG (2004) Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. Chem Biol 11:319–326

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Preseley AD, Francis MB (2007) Self-assembling light harvesting systems from synthetically modified tobacco mosaic virus. J Am Chem Soc 129:3104–3109

    Article  PubMed  CAS  Google Scholar 

  • Munshi S, Liljas L, Johnson JE (1998) Structure determination of Nudaurelia capensis omega virus. Acta Cryst D 54:1295–1305

    Article  CAS  Google Scholar 

  • Nakagawa A, Miyazaki N, Taka J et al. (2003) The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Namba K, Caspar DLD, Stubbs G (1985) Computer graphics representation of levels of organization in tobacco mosaic virus structure. Science 227:773–776

    Article  PubMed  CAS  Google Scholar 

  • Niu Z, Bruckman M, Kotakadi VS et al. (2006) Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem Commun (Camb) 3019–3021

    Google Scholar 

  • Ochoa WF, Chatterji A, Lin T, Johnson JE (2006) Generation and structural analysis of reactive empty particles derived from an icosahedral virus. Chem Biol 13:771–778

    Article  PubMed  CAS  Google Scholar 

  • O'Riordan CR, Lachapelle A, Delgado C et al. (1999) PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 10:1349–1358

    Article  PubMed  Google Scholar 

  • Paillard F (1999) Dressing up adenoviruses to modify their tropism. Hum Gene Ther 10:2575–2576

    Article  CAS  Google Scholar 

  • Porta C, Lomonossoff GP (1998) Scope for using plant viruses to present epitopes from animal pathogens. Rev Med Virol 8:25–41

    Article  PubMed  CAS  Google Scholar 

  • Porta C, Spall VE, Loveland J et al. (1994) Development of cowpea mosaic virus as a high-yielding system for the presentation of foreign peptides. Virology 202:949–955

    Article  PubMed  CAS  Google Scholar 

  • Portney NG, Singh K, Chaudhary S et al. (2005) Organic and inorganic nanoparticle hybrids. Langmuir 21:2098–2103

    Article  PubMed  CAS  Google Scholar 

  • Prasad B V, Hardy ME, Dokland T et al. (1999) X-ray crystallographic structure of the Norwalk virus capsid. Science 286:287–290

    Article  PubMed  CAS  Google Scholar 

  • Prasuhn J, DE, Yeh RM, Obenaus A, Manchester M, Finn MG (2007) Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition. Chem Commun 1269–1271

    Google Scholar 

  • Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1:13–21

    Article  PubMed  CAS  Google Scholar 

  • Radloff C, Vaia RA, Brunton J, Bouwer GT, Ward VK (2005) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5:1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Raja KS, Wang Q, Finn MG (2003a) Icosahedral virus particles as polyvalent carbohydrate display platforms. ChemBioChem 4:1348–1351

    Article  CAS  Google Scholar 

  • Raja KS, Wang Q, Gonzalez MJ et al. (2003b) Hybrid virus-polymer materials. 1. Synthesis and properties of peg-decorated cowpea mosaic virus. Biomacromolecules 4:472–476

    Article  CAS  Google Scholar 

  • Russell JT, Lin Y, Böker A et al. (2005) Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces. Angew Chem Int Ed 44:2420–2426

    Article  CAS  Google Scholar 

  • Sapsford KE, Soto CM, Blum AS et al. (2006) A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: application as an immunoassay tracer. Biosens Bioelectron 21:1668–1673

    Article  PubMed  CAS  Google Scholar 

  • Saxon E, Bertozzi Carolyn R (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010

    Article  PubMed  CAS  Google Scholar 

  • Saxon E, Luchansky SJ, Hang SC et al. (2002) Investigating cellular metabolism of synthetic azidosugars with the Staudinger Ligation. J Am Chem Soc 124:14893

    Article  PubMed  CAS  Google Scholar 

  • Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723

    Article  PubMed  CAS  Google Scholar 

  • Sen Gupta S, Kuzelka J, Singh P et al. (2005a) Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconj Chem 16:1572–1579

    Article  CAS  Google Scholar 

  • Sen Gupta S, Raja KS, Kaltgrad E, Strable E, Finn MG (2005b) Virus-glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. Chem Commun 4315–4317

    Google Scholar 

  • Shanks M, Lomonossoff GP (2000) Co-expression of the capsid proteins of cowpea mosaic virus in insect cells leads to the formation of virus-like particles. J Gen Virol 81:3093–3097

    PubMed  CAS  Google Scholar 

  • Shepherd CM, Borelli IA, Lander G et al. (2006) VIPERdb: a relational database for structural virology. Nucleic Acids Res 34:D386–D389

    Article  PubMed  CAS  Google Scholar 

  • Smith JC et al. (2003) Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett 3:883–886

    Article  CAS  Google Scholar 

  • Soto CM et al. (2004) Separation and recovery of intact gold-virus complex by agarose electrophoresis and electroelution: application to the purification of cowpea mosaic virus and colloidal gold complex. Electrophoresis 25:2901–2906

    Article  PubMed  CAS  Google Scholar 

  • Soto CM, Blum AS, Vora GJ et al. (2006) Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Am Chem Soc 128:5184–5189

    Article  PubMed  CAS  Google Scholar 

  • Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78

    Article  PubMed  CAS  Google Scholar 

  • Stauffacher CV et al. (1987) The structure of cowpea mosaic virus at 3.5 Ang. resolution. In: Moras J, Drenth J, Strandberg B, Suck D, Wilson K (eds) Crystallography in molecular biology. Plenum, New York, pp 293–308

    Google Scholar 

  • Steinmetz NF, Lomonossoff GP, Evans DJ (2005) Decoration of cowpea mosaic virus with multiple redox active organometallic complexes. Small 2:530–533

    Article  CAS  Google Scholar 

  • Steinmetz NF, Calder G, Lomonossoff G, Evans DJ (2006) Plant viral capsids as nanobuilding blocks: construction of arrays on solid supports. Langmuir 22:10032–10037

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz NF, Lomonossoff GP, Evans DJ (2006) Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold. Langmuir 22:3488–3490

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz NF, Evans DJ, Lomonossoff GP (2007) Chemical introduction of reactive thiols into a viral nanoscaffold: a method which avoids virus aggregation. ChemBioChem 8:1131–1136

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz NF, Evans DJ, Lomonossoff GP (2007) Monitoring aggregation of chemically and genetically engineered thiol-decorated viral nanoparticles. ChemBioChem, in press

    Google Scholar 

  • Strable E, Johnson JE, Finn MG (2004) Natural nanochemical building blocks: icosahedral virus particles organized by attached oligonucleotides. Nano Lett 4:1385–1389

    Article  CAS  Google Scholar 

  • Suci PA, Klem MT, Arce FT, Douglas T, Young M (2006) Assembly of multilayer films incorpo rating a viral protein cage architecture. Langmuir 22:8891–8896

    Article  PubMed  CAS  Google Scholar 

  • Taylor DJ, Krishna NK, Canady MA, Schneemann A, Johnson JE (2002) Large-scale, pH-dependent, quaternary structure changes in an RNA virus capsid are reversible in the absence of subunit autoproteolysis. J Virol 76:9972–9980

    Article  PubMed  CAS  Google Scholar 

  • Taylor DJ, Wang Q, Bothners B et al. (2003) Correlation of chemical reactivity of Nudaurelia capensis omega virus with a pH-induced conformational change. Chem Commun 2770–2771

    Google Scholar 

  • Tilley SD, Francis MB (2006) Tyrosine-selective protein alkylation using p-allylpalladium complexes. J Am Chem Soc 128:1080–1081

    Article  PubMed  CAS  Google Scholar 

  • Tseng RJ, Tsai C, Ma L et al. (2006) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nanotech 1:72–77

    Article  CAS  Google Scholar 

  • Usha R, Rholl JB, Spall VE et al. (1993) Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 197:366–374

    Article  PubMed  CAS  Google Scholar 

  • van Swieten PF, Leeuwenburgh MA, Kessler BM, Overkleeft HS (2005) Bioorthogonal organic chemistry in living cells: novel strategies for labeling biomolecules. Org Biomol Chem 3:20–27

    Article  PubMed  CAS  Google Scholar 

  • Virudachalam R, Harrington MM (1985) Thermal stability of cowpea mosaic virus components: differential scanning calorimetry studies. Virology 146:138–140

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Kaltgrad E, Lin T, Johnson JE, Finn MG (2002a) Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chem Biol 9:805–811

    Article  CAS  Google Scholar 

  • Wang Q, Lin T, Tang L, Johnson JE, Finn MG (2002b) Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Ed 41:459–462

    Article  CAS  Google Scholar 

  • Wang Q, Lin T, Johnson JE, Finn MG (2002c) Natural supramolecular building blocks cysteine-added mutants of cowpea mosaic virus. Chem Biol 9:813–819

    Article  CAS  Google Scholar 

  • Wang Q, Chan TR, Hilgraf R et al. (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 125:3192–3193

    Article  PubMed  CAS  Google Scholar 

  • Wikoff WR, Duda RL, Hendrix RW, Johnson JE (1999) Crystallographic analysis of the dsDNA bacteriophage HK97 mature empty capsid. Acta Crystallogr D: Biol Crystallogr D55:763–771

    Article  CAS  Google Scholar 

  • Wong SS (1991) Chemistry of protein conjugation and cross-linking. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wynne SA, Crowther RA, Leslie AG (1999) The crystal structure of the human hepatitis B virus capsid. Mol Cell 3:771–780

    Article  PubMed  CAS  Google Scholar 

  • Zabel P, Moerman M, Lomonossoff G, Shanks M, Beyreuther K (1984) Cowpea mosaic virus VPg: sequencing of radiochemically modified protein allows mapping of the gene on B RNA. EMBO J 3:1629–1634

    PubMed  CAS  Google Scholar 

  • Zalipsky S (1995) Chemistry of polyethylene-glycol conjugates with biologically active molecules. Adv Drug Del Rev 16:157–182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Finn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strable, E., Finn, M.G. (2009). Chemical Modification of Viruses and Virus-Like Particles. In: Manchester, M., Steinmetz, N.F. (eds) Viruses and Nanotechnology. Current Topics in Microbiology and Immunology, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69379-6_1

Download citation

Publish with us

Policies and ethics