Skip to main content

Abstract

The phenotypic expressions of rosacea have been suggested to be caused by divergent pathogenetic factors. Although its precise etiology remains unknown, various factors have been suspected of contributing to this condition (Table 81.1). Recently, familial cases of rosacea have been reported, and a genetic predisposition to the disease has been suggested. In addition, ultraviolet (UV) light-induced skin changes, such as solar elastosis and vessel dilatation as well as immunosuppression, have been accused to contribute in the development of rosacea [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powell FC. Clinical practice. Rosacea. N Engl J Med. 2005;352:793–803.

    Article  CAS  PubMed  Google Scholar 

  2. Plewig G, Kligman AM. Acne and rosacea. Berlin: Springer; 2000. p. 433–75.

    Book  Google Scholar 

  3. Crawford GH, Pelle MT, James WD. Rosacea: I. Etiology, pathogenesis, and subtype classification. J Am Acad Dermatol. 2004;51:327–41.

    Article  PubMed  Google Scholar 

  4. Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr Rev. 2000;21:457–87.

    CAS  PubMed  Google Scholar 

  5. Weissenbacher S, Merkl J, Hildebrandt B, et al. Pimecrolimus cream 1% for papulopustular rosacea: a randomized vehicle-controlled double-blind trial. Br J Dermatol. 2007;156:728–32.

    Article  CAS  PubMed  Google Scholar 

  6. Powell FC, Corbally N, Powell D. Substance P and rosacea. J Am Acad Dermatol. 1993;28:132–3.

    Article  CAS  PubMed  Google Scholar 

  7. Lonne-Rahm S, Nordlind K, Edström DW, et al. Laser treatment of rosacea: a pathoetiological study. Arch Dermatol. 2004;140:1345–9.

    Article  PubMed  Google Scholar 

  8. Wollina U. Rhinophyma-unusual expression of simple-type keratins and S100A in sebocytes and abundance of VIP receptor-positive dermal cells. Histol Histopathol. 1996;11:111–5.

    CAS  PubMed  Google Scholar 

  9. Kligman AM. A personal critique on the state of knowledge of rosacea. Dermatology. 2004;208:191–7.

    Article  PubMed  Google Scholar 

  10. Murphy GM. Ultraviolet light and rosacea. Cutis. 2004;74:32–4.

    Google Scholar 

  11. Berg M, Liden S. An epidemiological study of rosacea. Acta Dermatol Venereol. 1989;69:419–23.

    CAS  Google Scholar 

  12. Yano K, Kadoya K, Kajiya K, et al. Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1. Br J Dermatol. 2005;152:115–21.

    Article  CAS  PubMed  Google Scholar 

  13. Smith JR, Lanier VB, Braziel RM, et al. Expression of vascular endothelial growth factor and its receptors in rosacea. Br J Ophthalmol. 2007;91:226–9.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Aubin F. Mechanisms involved in ultraviolet light-induced immunosuppression. Eur J Dermatol. 2003;13:515–23.

    CAS  PubMed  Google Scholar 

  15. Lachgar S, Charvéron M, Gall Y, et al. Inhibitory effects of retinoids on vascular endothelial growth factor production by cultured human skin keratinocytes. Dermatology. 1999;199:25–7.

    Article  CAS  PubMed  Google Scholar 

  16. Kosmadaki MG, Yaar M, Arble BL, et al. UV induces VEGF through a TNF-alpha independent pathway. FASEB J. 2003;17:446–8.

    CAS  PubMed  Google Scholar 

  17. Howell BG, Wang B, Freed I, et al. Microarray analysis of UVB-regulated genes in keratinocytes: downregulation of angiogenesis inhibitor thrombospondin-1. J Dermatol Sci. 2004;34:185–94.

    Article  CAS  PubMed  Google Scholar 

  18. McKenzie RC. Ultraviolet radiation B (UVB)-induction of leukaemia inhibitory factor (LIF) in human keratinocytes. Photodermatol Photoimmunol Photomed. 2001;17:284–5.

    Article  CAS  PubMed  Google Scholar 

  19. Buckman SY, Gresham A, Hale P. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis. 1998;19:723–9.

    Article  CAS  PubMed  Google Scholar 

  20. Motley RJ. The significance of telangiectasia in rosacea. In: Marks R, Plewig G, editors. Acne and related disorders. London: Martin Dunitz; 1989. p. 339–44.

    Google Scholar 

  21. Helm KF, Menz J, Gibson LE, et al. A clinical and histopathologic study of granulomatous rosacea. J Am Acad Dermatol. 1991;25:1038–43.

    Article  CAS  PubMed  Google Scholar 

  22. Nakamuro K, Johnson WC. Ultraviolet light induced connective tissue changes in rat skin: a histologic and histochemical study. J Invest Dermatol. 1968;51:194–8.

    Google Scholar 

  23. Neumann E, Fritz A. Capillaropathy and capillaroneogenesis in the pathogenesis of rosacea. Int J Dermatol. 1998;37:263–6.

    Article  CAS  PubMed  Google Scholar 

  24. Ramelet A, Perroulaz G. Rosacée: étude histopathologique de 75 cas. Ann Dermatol Venereol. 1988;115:801–6.

    CAS  PubMed  Google Scholar 

  25. Ozkaya-Bayazit E, Buyukbabani N. Anular elastolytic giant cell granuloma sparing a burn scar and successful treatment with chloroquine. Br J Dermatol. 1999;140:525–30.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Hoqail IA, Al-Ghamdi AM. Actinic granuloma is a unique and distinct entity. Am J Dermatopathol. 2002;24:209–12.

    Article  PubMed  Google Scholar 

  27. Aroni K, Tsagroni E, Lazaris AC, et al. Rosacea: a clinicopathological approach. Dermatology. 2004;209:177–82.

    Article  PubMed  Google Scholar 

  28. de Wied D. Peptide hormones and neuropeptides: birds of a feather. Trends Neurosci. 2000;23:113–4.

    Article  PubMed  Google Scholar 

  29. Sleijffers A, Herreilers M, van Loveren H. Ultraviolet B radiation induces upregulation of calcitonin gene-related peptide levels in human Finn chamber skin samples. J Photochem Photobiol. 2003;69:149–52.

    Article  CAS  Google Scholar 

  30. Legat FJ, Jaiani LT, Wolf P, et al. The role of calcitonin gene-related peptide in cutaneous immunosuppression induced by repeated subinflammatory ultraviolet irradiation exposure. Exp Dermatol. 2004;13:242–50.

    Article  CAS  PubMed  Google Scholar 

  31. Wilkins BW, Chung LH, Tublitz NJ, et al. Mechanisms of vasoactive intestinal peptide-mediated vasodilation in human skin. J Appl Physiol. 2004;97:1291–8.

    Article  CAS  PubMed  Google Scholar 

  32. Pierard-Franchimont C, Quatresooz P, Piérard GE. Incidental control of rosacea by somatostatin. Dermatology. 2003;206:249–51.

    Article  CAS  PubMed  Google Scholar 

  33. Bamford JT, Elliott BA, Haller IV. Tacrolimus effect on rosacea. J Am Acad Dermatol. 2004;50:107–8.

    Article  PubMed  Google Scholar 

  34. Shanler SD, Ondo AL. Successful treatment of the erythema and flushing of rosacea using a topically applied selective alpha1-adrenergic receptor agonist oxymetazoline. Arch Dermatol. 2007;143:1369–71.

    Article  CAS  PubMed  Google Scholar 

  35. Moore A, Kempers S, Murakawa G, et al. Long-term safety and efficacy of once-daily topical brimonidine tartrate gel 0.5% for the treatment of moderate to severe facial erythema of rosacea: results of a 1-year open-label study. J Drugs Dermatol. 2014;13:56–61.

    Google Scholar 

  36. Del Rosso JQ. Recently approved systemic therapies for acne vulgaris and rosacea. Cutis. 2007;80:113–20.

    PubMed  Google Scholar 

  37. Park H, Del Rosso JQ. Use of oral isotretinoin in the management of rosacea. J Clin Aesthet Dermatol. 2011;4:54–61.

    Google Scholar 

  38. Grammatopoulos DK, Chrousos GP. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab. 2002;13:436–44.

    Article  CAS  PubMed  Google Scholar 

  39. Slominski A, Wortsman J, Luger T, et al. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979–1020.

    CAS  PubMed  Google Scholar 

  40. Zouboulis CC, Seltmann H, Hiroi N, et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci USA. 2002;99:7148–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Slominski A, Zbytek B, Szczesniewski A, et al. CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. Am J Physiol Endocrinol Metab. 2005;288:701–6.

    Article  Google Scholar 

  42. Flint MS, Morgan JB, Shreve SN, et al. Restraint stress and corticotropin releasing hormone modulation of murine cutaneous POMC mRNA. Stress. 2003;6:59–62.

    Article  CAS  PubMed  Google Scholar 

  43. Crompton R, Clifton VL, Bisits AT, et al. Corticotropin-releasing hormone causes vasodilation in human skin via mast cell-dependent pathways. J Clin Endocrinol Metab. 2003;88:5427–32.

    Article  CAS  PubMed  Google Scholar 

  44. Theoharides TC, Donelan JM, Papadopoulou N, et al. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci. 2004;25:563–8.

    Article  CAS  PubMed  Google Scholar 

  45. Donelan J, Boucher W, Papadopoulou N, et al. Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin-dependent process. Proc Natl Acad Sci U S A. 2006;103:7759–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Park HJ, Kim HJ, Lee JH, et al. Corticotropin-releasing hormone (CRH) downregulates interleukin-18 expression in human HaCaT keratinocytes by activation of p38 mitogen-activated protein kinase (MAPK) pathway. J Invest Dermatol. 2005;124:751–5.

    Article  CAS  PubMed  Google Scholar 

  47. Zbytek B, Slominski AT. Corticotropin-releasing hormone induces keratinocyte differentiation in the adult human epidermis. J Cell Physiol. 2005;203:118–26.

    Article  CAS  PubMed  Google Scholar 

  48. Krause K, Schnitger A, Fimmel S, et al. Corticotropin-releasing hormone skin signalling is receptor-mediated and is predominant in the sebaceous glands. Horm Metab Res. 2007;39:166–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos C. Zouboulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fimmel, S., Kutzner, H., Zouboulis, C.C. (2014). The Vascular Concept. In: Zouboulis, C., Katsambas, A., Kligman, A. (eds) Pathogenesis and Treatment of Acne and Rosacea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69375-8_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69375-8_81

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69374-1

  • Online ISBN: 978-3-540-69375-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics