Skip to main content

Abstract

Current treatment options for acne do not stand up to the challenge of an optimal treatment. Indeed, there is no topical therapy that effectively targets all four major pathogenetic factors implicated in acne, namely, increased seborrhea, follicular hyperkeratinization, Propionibacterium acnes (P. acnes) hypercolonization, and inflammation; it may be its multifactorial etiology that makes acne challenging to treat. Furthermore, many patients with acne have clinically relevant P. acnes resistance limiting the use of antibiotics, and some patients may be intolerant to second- or third-line therapies, such as minocycline and oral isotretinoin [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Katsambas A, Dessinioti C. New and emerging treatments in dermatology: acne. Dermatol Ther. 2008;21:86–95.

    Article  CAS  PubMed  Google Scholar 

  2. Thielitz A, Reinhold D, Vetter R, et al. Inhibitors of dipeptidyl peptidase IV( DP IV) and aminopeptidase N (APN) show strong anti-inflammatory effects on immune cells and therapeutic efficacy in autoimmune disorders. J Invest Dermatol. 2007;127:1042–51.

    Article  CAS  PubMed  Google Scholar 

  3. Toyoda M, Nakamura M, Makino T, et al. Sebaceous glands in acne patients express high levels of neutral endopeptidase. Exp Dermatol. 2002;11:241–7.

    Article  CAS  PubMed  Google Scholar 

  4. Reinhold D, Bank U, Buhling F, et al. Inhibitors of dipeptidyl peptidase IV induce secretion of transforming growth factor beta 1 in PWM-stimulated PBMC and T cells. Immunology. 1997;91:354–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Reinhold D, Kahne T, Steinbrecher A, et al. The role of dipeptidyl peptidase IV (DP IV, CD26) in T cell activation and autoimmunity. Biol Chem. 2002;383: 1133–8.

    Article  CAS  PubMed  Google Scholar 

  6. Available at: http://www.clinicaltrials.gov/ct2/show/NCT00676338?term=dipeptidyl+peptidase+IV&rank=4. Accessed 20 Oct 2011

  7. Available at: http://www.clinicaltrials.gov/ct2/show/NCT00824980?term=dipeptidyl+peptidase+IV&rank=2. Accessed 20 Oct 2011

  8. Hynyadi J, Simon Jr M, Kenderessy AS, et al. Expression of monocyte/macrophage markers (CD13, CD14, CD68) on human keratinocytes in healthy and diseased skin. J Dermatol. 1993;20:341–5.

    Google Scholar 

  9. Novelli M, Savoia P, Fieno MT, et al. Keratinocytes express dipeptidyl-peptidase IV (CD26) in benign and malignant skin diseases. Br J Dermatol. 1996;134:1052–6.

    Article  CAS  PubMed  Google Scholar 

  10. Reinhold D, Vetter RW, Mnich K, et al. Dipeptidyl peptidase IV (DP IV, CD26) is involved in regulation of DNA synthesis in human keratinocytes. FEBS Lett. 1998;428:100–4.

    Article  CAS  PubMed  Google Scholar 

  11. Gabrilovac J, Cupic B, Breljak D, et al. Expression of CD13/aminopeptidase N and CD10/neutral endopeptidase on cultured human keratinocytes. Immunol Lett. 2004;91:39–47.

    Article  CAS  PubMed  Google Scholar 

  12. Thielitz A, Bukowska A, Wolke C, et al. Identification of extra- and intracellular alanyl aminopeptidases as new targets to modulate keratinocyte growth and differentiation. Biochem Biophys Res Commun. 2004;321:795–801.

    Article  CAS  PubMed  Google Scholar 

  13. Alestas T, Ganceviciene R, Fimmel S, et al. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med. 2006;84:75–87.

    Article  CAS  PubMed  Google Scholar 

  14. Zouboulis CC, Nestoris S, Adler YD, et al. A new concept for acne therapy: a pilot study with zileuton, an oral 5-lipoxygenase inhibitor. Arch Dermatol. 2003;139:668–70.

    Article  PubMed  Google Scholar 

  15. Zouboulis CC, Saborowski A, Boschnakow A. Zileuton, an oral 5-lipoxygenase inhibitor, directly reduces sebum production. Dermatology. 2005;210:36–8.

    Article  CAS  PubMed  Google Scholar 

  16. Zouboulis CC, Seltmann H, Alestas T. Zileuton prevents the activation of the leukotriene pathway and reduces sebaceous lipogenesis. Exp Dermatol. 2010;19:148–50.

    Article  CAS  PubMed  Google Scholar 

  17. Zouboulis CC. Zileuton, a new efficient and safe systemic anti-acne drug. Dermatoendocrinology. 2009;1: 188–92.

    Article  CAS  Google Scholar 

  18. Zouboulis CC, Angres S, Seltmann H. Regulation of stearoyl-coenzyme A desaturase and fatty acid delta-6 desaturase-2 expression by linoleic acid and arachidonic acid in human sebocytes leads to enhancement of proinflammatory activity but does not affect lipogenesis. Br J Dermatol. 2011;165:269–76.

    Article  CAS  PubMed  Google Scholar 

  19. Bohm M, Luger TA, Tobin DJ, et al. Melanocortin receptor ligands: new horizons for skin biology and clinical dermatology. J Invest Dermatol. 2011;126:1966–75.

    Article  Google Scholar 

  20. Mastrofrancesco A, Kokot A, Eberle A, et al. KDPT, a tripeptide derivative of α-Melanocyte-stimulating hormone, suppresses IL-1β-mediated cytokine expression and signaling in human sebocytes. J Immunol. 2010;185:1903–11.

    Article  CAS  PubMed  Google Scholar 

  21. Bohm M, Schiller M, Stander S, et al. Evidence for expression of melanocortin-1 receptor in human sebocytes in vitro and in situ. J Invest Dermatol. 2002;118:533–9.

    Article  CAS  PubMed  Google Scholar 

  22. Schuster M, Zouboulis CC, Ochsendorf F, et al. Peroxisome proliferator-activated receptor activators protect sebocytes from apoptosis: a new treatment modality for acne? Br J Dermatol. 2011;164:182–6.

    Article  CAS  PubMed  Google Scholar 

  23. Nakatsuji T, Kao MC, Fnag JY, et al. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol. 2009;1289:2480–8.

    Article  Google Scholar 

  24. Kitahara T, Koyama N, Matsuda J, et al. Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2004;27:1321–6.

    Article  CAS  PubMed  Google Scholar 

  25. Petschow BW, Batema RP, Ford LL. Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrob Agents Chemother. 1996;40:302–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Chavant P, Gaillard-Martinie B, Hebraud M. Antimicrobial effects of sanitizers against planktonic and sessile Listeria monocytogenes cells according to the growth plate. FEMS Microbiol Lett. 2004;236:241–8.

    Article  CAS  PubMed  Google Scholar 

  27. Liu PT, Krutzik SR, Kim J, et al. Cutting edge: all trans-retinoic acid down-regulates TLR2 expression and function. J Immunol. 2005;174:2467–70.

    Article  CAS  PubMed  Google Scholar 

  28. Tenaud I, Khammari A, Dreno B. In vitro modulation of TLR-2, CD1d and IL-10 by adapalene on normal human skin and acne inflammatory lesions. Exp Dermatol. 2007;16:500–6.

    Article  CAS  PubMed  Google Scholar 

  29. Jarrousse V, Castex-Rizzi N, Khammari A, et al. Zinc salts inhibit in vitro Toll-like receptor 2 surface expression by keratinocytes. Eur J Dermatol. 2007;17:492–6.

    CAS  PubMed  Google Scholar 

  30. Zaluga E. Skin reactions to antigens of Propionibacterium acnes in patients with acne vulgaris treated with autovaccine. Ann Acad Med Stetin. 1998;44:65–85.

    CAS  PubMed  Google Scholar 

  31. Nakatsuji T, Liu YT, Huang CP, et al. Antibodies elicited by inactivated Propionibacterium acnes-based vaccines exert protective immunity and attenuate the IL-8 production in human sebocytes: relevance to therapy for acne vulgaris. J Invest Dermatol. 2008;128:2451–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kim J. Acne vaccines: Therapeutic option for the treatment of acne vulgaris? J Invest Dermatol. 2008;128:2353–4.

    Article  CAS  PubMed  Google Scholar 

  33. Ingham E, Gowland G, Ward RM, et al. Antibodies to P.acnes and P.acnes extracellular enzymes in the normal population at various ages and in patients with acne vulgaris. Br J Dermatol. 1987;116:805–12.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Zhang Z, Chen L, et al. Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for acne vulgaris. PLOS One. 2011;6:e22120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Isard O, Leveque M, Knol AC, et al. Anti-inflammatory properties of a new undecyl-rhamnoside (APRC11) against P. acnes. Arch Dermatol Res. 2011;303:707–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clio Dessinioti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dessinioti, C., Zouboulis, C.C. (2014). Concepts of Future Acne Treatment. In: Zouboulis, C., Katsambas, A., Kligman, A. (eds) Pathogenesis and Treatment of Acne and Rosacea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69375-8_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69375-8_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69374-1

  • Online ISBN: 978-3-540-69375-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics