Skip to main content

Molecular Aspects of Sebaceous Differentiation

  • Chapter

Abstract

Epidermal progenitor cells give rise to multiple skin lineages: hair follicle, sebaceous gland, and the overlying interfollicular epidermis [30, 39]. The multipotent stem cells reside in the bulge region of the hair follicle. These cells transform into the epidermis (epidermal keratinocytes) as well as its associated structures, sebaceous gland (sebocytes), and cells of the hair follicle (follicular keratinocytes). Sebocytes are the major cells within sebaceous glands (SG) [43]. The human SG is a multiacinar, holocrine-secreting tissue present in all areas of the skin except for the palms and soles. Its development is closely related to the differentiation of the hair follicle and the epidermis. SG develops in the 13–16th weeks of gestation in humans, arising in a cephalocaudal sequence from the hair follicle. In the skin, most sebaceous glands are associated with the upper portion of a hair follicle, forming the pilosebaceous unit. They are located as an outgrowth of the hair follicle outer root sheath, at the level of the middle dermis [54]. Development of the pilosebaceous unit involves an ordered set of developmental processes [26]. During late embryogenesis, developing hair follicles (hair peg stage) display several bulges of which one will give rise to the sebaceous gland and is located just above the hair follicle stem cell bulge and below the infundibulum of the developing follicle [26].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Niemann C, Unden A, Lyle S, et al. Indian hedgehog and beta-catenin signalling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A. 2003;30 Suppl 1:11873–80.

    Article  Google Scholar 

  2. Rizvi AZ, Wong MH. Epithelial stem cells and their niche: there’s no place like home. Stem Cells. 2005;23:150–65.

    Article  PubMed  Google Scholar 

  3. Schneider MR, Raus R. Sebocytes, multifaceted epithelial cells: Lipid production and holocrine secretion. Int J Biochem Cell Biol. 2010;42:181–5.

    Article  CAS  PubMed  Google Scholar 

  4. Zouboulis CC, Fimmel S, Ortmann J, et al. Sebaceous glands. In: Hoath SB, Maibach HI, editors. Neonatal skin—structure and function. 2nd ed. New York Basel: Marcel Dekker; 2003. p. 59–88.

    Google Scholar 

  5. Niemann C. Differentiation of the sebaceous gland. Dermatoendocrinol. 2009;1:66–7.

    Article  Google Scholar 

  6. Zouboulis CC. Acne and sebaceous gland function. Clin Dermatol. 2004;22:360.

    Article  PubMed  Google Scholar 

  7. Lo Celso C, Berta MA, Braun KM, et al. Characterization of bipotent epidermal progenitors derived from human sebaceous gland: contrasting roles of c-myc and β-catenin. Stem Cells. 2008;26:1241–52.

    Article  CAS  PubMed  Google Scholar 

  8. Blampain C, Lowry WE, Geoghegan A, et al. Self-renewal, multipotence and the existence of two cell populations within an epidermal stem cell. Cell. 2004;118:635–48.

    Article  Google Scholar 

  9. Morris RJ, Liu Y, Marles L, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22:411–7.

    Article  CAS  PubMed  Google Scholar 

  10. Oshima H, Rochat A, Kedzia C, et al. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104:233–45.

    Article  CAS  PubMed  Google Scholar 

  11. Taylor G, Lehrer MS, Hensen PJ, et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell. 2000;102:451–61.

    Article  CAS  PubMed  Google Scholar 

  12. Horsley V, O’Carroll D, Tooze R, et al. Blimp1 defines a progenitor population that governs cellular imput to the sebaceous gland. Cell. 2006;126:597–609.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Owens DM, Watt FM. Contribution of stem cells and differentiated cells to epidermal tumous. Nat Rev Cancer. 2003;3:444–5.

    Article  CAS  PubMed  Google Scholar 

  14. Zouboulis CC, Schagen S, Alestas T. The sebocyte culture: a model to study the pathophysiology of the sebaceous gland in sebostasis, seborrhoea and acne. Arch Dermatol Res. 2008;300:397–413.

    Article  PubMed  Google Scholar 

  15. Watt F. The stem cell compartment in human interfollicular epidermis. J Dermatol Sci. 2002;28:173–80.

    Article  CAS  PubMed  Google Scholar 

  16. Nowak JA, Polak L, Pasolli HA, et al. Hair follicle stem cells are specified and function in early skin morphogenesis. Cell Stem Cell. 2008;3:33–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ghazizadeh S, Taichman LB. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 2001;20:1215–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sellheyer K, Krahl D. Blimp-1: a marker of terminal differentiation but not of sebocytic progenitor cells. J Cutan Pathol. 2010;37:362–70.

    Article  PubMed  Google Scholar 

  19. Magnúsdóttir E, Kalachikov S, Mizukoshi K, et al. Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc Natl Acad Sci U S A. 2007;104:14988–93.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Arnold I, Watt FM. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr Biol. 2001;11:558–68.

    Article  CAS  PubMed  Google Scholar 

  21. Waikel RL, Iy K, Waikel PA, et al. Deregulated expression of c-Myc depletes epidermal stem cells. Nat Genet. 2001;28:165–8.

    Article  CAS  PubMed  Google Scholar 

  22. Zanet J, Pibre S, Jacquet C, et al. Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J Cell Sci. 2005;118:1693–704.

    Article  CAS  PubMed  Google Scholar 

  23. Braun K, Niemann C, Jensen U, et al. Manipulation of stem cells proliferation and lineage commitment: visualisation of label-retaining cells in whole-mounts of mouse epidermis. Development. 2003;130:5241–55.

    Article  CAS  PubMed  Google Scholar 

  24. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  25. He TC, Sparks AB, Rago C, et al. Identification of c-Myc as a target of the APC pathway. Science. 1998;281:1509–12.

    Article  CAS  PubMed  Google Scholar 

  26. Frances D, Niemann C. Stem cell dynamics in sebaceous gland morphogenesis in mouse skin. Dev Biol. 2012;363:138–46.

    Article  CAS  PubMed  Google Scholar 

  27. Jensen KB, Collins CA, Nascimento E, et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell. 2009;4:427–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Niemann C, Horsley V. Development and homeostasis of the sebaceous gland. Semin Cell Dev Biol. 2012;23:928–36.

    Article  CAS  PubMed  Google Scholar 

  29. Petersson M, Brylka H, Kraus A, et al. TCF/Lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis. EMBO J. 2011;30:3004–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Watt FM, Jensen KB. Epidermal stem cell diversity and quiescence. EMBO Mol Med. 2009;1:260–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. DasGupta R, Rhee H, Fuchs E. A developmental conundrum: a stabilized form of beta-catenin lacking the transcriptional activation domain triggers features of hair cell fate in epidermal cells and epidermal cell fate in hair follicle cells. J Cell Biol. 2002;158:331–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 2005;3:331.

    Article  Google Scholar 

  33. Takeda H, Lyle S, Lazaar AFJ, et al. Human sebaceous tumors harbor inactivating mutations in Lef1. Nat Med. 2006;12:395–7.

    Article  CAS  PubMed  Google Scholar 

  34. Niemann C, Owen DM, Schettina P, et al. Dual role of inactivating Lef1 mutations in epidermis: tumour promotion and specification of tumour type. Cancer Res. 2007;67:2916–21.

    Article  CAS  PubMed  Google Scholar 

  35. Merrill B, Gat U, DasGupta R, et al. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 2001;15:1688–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Niemann C, Owens D, Hulsken J, et al. Expression of Delta Nlef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development. 2002;129:95–109.

    CAS  PubMed  Google Scholar 

  37. Han G, Li AG, Liang YY, et al. Smad7-induced β-catenin degradation alters epidermal appendage development. Dev Cell. 2006;11:301–12.

    Article  CAS  PubMed  Google Scholar 

  38. Quan T, He T, Kang S, et al. Ultraviolet irradiation alters transformation growth factor beta/smad pathway in human skin in vivo. J Invest Dermatol. 2002;119:499–506.

    Article  CAS  PubMed  Google Scholar 

  39. Zouboulis CC, Adjaye J, Akamatsu H, et al. Human skin stem cells and the aging process. Exp Gerontol. 2008;43:986–97.

    Article  CAS  PubMed  Google Scholar 

  40. Fuchs E, Merrill B, Jamora C, et al. At the roots of a never-ending cycle. Dev Cell. 2001;1:13–25.

    Article  CAS  PubMed  Google Scholar 

  41. Allen M, Grachtchouk M, Sheng H, et al. Hedgehog signaling regulates sebaceous gland development. Am J Pathol. 2003;163:2173–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Oro AE, Higgins KM, Hu Z, et al. Basal cell carcinoma in mice overexpressing sonic hedgehog. Science. 1997;276:817–21.

    Article  CAS  PubMed  Google Scholar 

  43. Gu LH, Coulombe PA. Hedgehog signaling, keratin 6 induction and sebaceous gland morphogenesis: Implications for pachyonychia congenital and related conditions. Am J Pathol. 2008;173:752–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15:3059–87.

    Article  CAS  PubMed  Google Scholar 

  45. Zouboulis CC, Seltmann H, Neitzel H, et al. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J Invest Dermatol. 1999;113:1011–20.

    Article  CAS  PubMed  Google Scholar 

  46. Guha U, Mecklenbrug L, Cowin P, et al. Bone mor-phogenetic protein signaling regulates postnatal hair follicle differentiation and cycling. Am J Pathol. 2004;165:729–40.

    Google Scholar 

  47. Chesire DR, Ewing CM, Gage WR, et al. In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate growth and tumorigenesis. Oncogene. 2002;21:2679–94.

    Article  CAS  PubMed  Google Scholar 

  48. Pawlowski JE, Ertel JR, Allen MP, et al. Liganded androgen receptor interaction with beta-catenin: nuclear co-localization and modulation of transcriptional activity in neuronal cells. J Biol Chem. 2002;277:20702–10.

    Article  CAS  PubMed  Google Scholar 

  49. Yang F, Li X, Sharma M, et al. Linking beta-catenin to androgen-signaling pathway. J Biol Chem. 2002;277:11336–44.

    Article  CAS  PubMed  Google Scholar 

  50. Akimoto N, Sato T, Iwata C, et al. Expression of perilipin A on the surface of lipid droplets increases along with the differentiation of hamster sebocytes in vivo and in vitro. J Invest Dermatol. 2005;124:1127–33.

    Article  CAS  PubMed  Google Scholar 

  51. Di-Poi N, Michalik L, Desvergne B, Wahli W. Functions of peroxisome proliferator-activated receptors (PPAR) in skin homeostasis. Lipids. 2004;39:1093–9.

    Article  CAS  PubMed  Google Scholar 

  52. House JS, Zhu S, Ranjan R, et al. C/EBPalpha and C/EBPbeta are required for sebocyte differentiation and stratified squamous differentiation in adult mouse skin. PLoS One. 2010;5:e9837.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Latham JA, Redfern CP, Thody AJ, et al. Immunohistochemical markers of human sebaceous gland differentiation. J Histochem Cytochem. 1989;37:729–34.

    Article  CAS  PubMed  Google Scholar 

  54. Schmuth M, Ortegon AM, Mao-Qiang M, et al. Differential expression of fatty acid transport proteins in epidermis and skin appendages. J Invest Dermatol. 2005;125:1174–81.

    Article  CAS  PubMed  Google Scholar 

  55. Smith TM, Cong Z, Gilliland KL, et al. Insulin-like growth factor-1 induces lipid production in human SEB-1 sebocytes via sterol response element-binding protein-1. J Invest Dermatol. 2006;126:1226–32.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang L, Li WH, Anthonavage M, et al. Melanocortin-5 receptor: a marker of human sebocyte differentiation. Peptides. 2006;27:413–20.

    Article  PubMed  Google Scholar 

  57. Zouboulis CC, Krieter A, Gollnick H, et al. Progressive differentiation of human sebocytes in vitro is characterized by increasing cell size and altering antigen expression and is regulated by culture duration and retinoids. Exp Dermatol. 1994;3:151–60.

    Article  CAS  PubMed  Google Scholar 

  58. Zouboulis CC, Xia L, Detmar M, et al. Culture of human sebocytes and markers of sebocytic differentiation in vitro. Skin Pharmacol. 1991;4:74–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos C. Zouboulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zouboulis, C.C., Nikolakis, G., Dessinioti, C. (2014). Molecular Aspects of Sebaceous Differentiation. In: Zouboulis, C., Katsambas, A., Kligman, A. (eds) Pathogenesis and Treatment of Acne and Rosacea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69375-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69375-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69374-1

  • Online ISBN: 978-3-540-69375-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics