Skip to main content

Abstract

Hecht [1] was the first who studied the role of heredity in acne. Neonatal, nodulocystic, and conglobate acne have proven genetic influences [2]. Postadolescent acne is related with a first-degree relative with the condition in 50 % of the cases. Chromosomal abnormalities, HLA phenotypes, and polymorphisms of various genes have been associated with acne. Data from family studies confirmed familial clustering [3–5]. High heritability estimates for acne in twins were reported [6, 7]. Higher correlations of sebum excretion and the proportion of branched fatty acids in the fraction of sebaceous wax esters were found in monozygotic vs. dizygotic twins [8, 9]. A large twin study demonstrated that 81 % of the variance of the disease was attributed to additive genetic effects, whereas the remaining 19 % was attributed to unique, unshared environmental factors [10]. Apolipoprotein A1 serum levels were significantly lower in acne twins [10]. A family history of acne is associated with earlier occurrence of the disease, increased number of retentional lesions, and therapeutic difficulties, especially a higher risk for a relapse after oral isotretinoin treatment [11]. Another twin study revealed that heritability of acne on the back was very high [12]. Remarkably, at age 14 years, facial acne in girls was less influenced by genetic factors than in boys and was significantly influenced by common environmental factors [12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTH:

Adrenocorticotropic hormone

AR:

Androgen receptor

DHEAS:

Dehydroepiandrosterone sulfate

DHT:

Dihydrotestosterone

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

FoxO:

Forkhead box class O transcription factor

GH:

Growth hormone

GHR:

Growth hormone receptor

IGF:

Insulin-like growth factor-1

IGF1R:

Insulin-like growth factor-1 receptor

IL-1:

Interleukin 1

IR:

Insulin receptor

LH:

Luteinizing hormone

LXR:

Liver X receptor

MAPK:

Mitogen-activated protein kinase

MC1R:

Melanocortin 1 receptor

MC5R:

Melanocortin 5 receptor

MMP:

Matrix metalloproteinase

PCOS:

Polycystic ovary syndrome

PI3K:

Phosphoinositide-3-kinase

PLC:

Phospholipase C

POMC:

Proopiomelanocortin

PPAR:

Peroxisome proliferator-activated receptor

RAR:

Retinoic acid receptor

RXR:

Retinoid X receptor

SHH:

Sonic hedgehog

SNP:

Single nucleotide polymorphism

SREBP:

Sterol regulatory element binding protein

5αR-I:

5 Alpha reductase type 1

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

References

  1. Hecht H. Heredity trends in acne vulgaris. Dermatologica. 1960;121:297–307.

    CAS  PubMed  Google Scholar 

  2. Herane MI, Ando I. Acne in infancy and acne genetics. Dermatology. 2003;206:24–8.

    PubMed  Google Scholar 

  3. Goulden V, McGeown CH, Cunliffe WJ. The familial risk of adult acne: a comparison between first-degree relatives of affected and unaffected individuals. Br J Dermatol. 1999;141:297–300.

    CAS  PubMed  Google Scholar 

  4. Goulden V, Stables GI, Cunliffe WJ. Prevalence of facial acne in adults. J Am Acad Dermatol. 1999;41:577–80.

    CAS  PubMed  Google Scholar 

  5. Xu SX, Wang HL, Fan X, et al. The familial risk of acne vulgaris in Chinese Hans – a case-control study. J Eur Acad Dermatol Venereol. 2007;21:602–5.

    CAS  PubMed  Google Scholar 

  6. Friedman GD. Twin studies of disease heritability based on medical records: application to acne vulgaris. Acta Genet Med Gemellol (Roma). 1984;33:487–95.

    CAS  Google Scholar 

  7. Kirk KM, Evans DM, Farthing B, et al. Genetic and environmental influences on acne in adolescent twins. Twin Res. 2001;4:190.

    Google Scholar 

  8. Stewart ME, Grahek MO, Cambier LS, et al. Dilutional effect of increased sebaceous gland activity on the proportion of linoleic acid in sebaceous wax esters and in epidermal acylceramides. J Invest Dermatol. 1986;87:733–6.

    CAS  PubMed  Google Scholar 

  9. Walton S, Wyatt EH, Cunliffe WJ. Genetic control of sebum excretion and acne – a twin study. Br J Dermatol. 1988;118:393–6.

    CAS  PubMed  Google Scholar 

  10. Bataille V, Snieder H, MacGregor AJ, et al. The influence of genetics and environmental factors in the pathogenesis of acne: a twin study of acne in women. J Invest Dermatol. 2002;119:1317–22.

    CAS  PubMed  Google Scholar 

  11. Ballanger F, Baudry P, N’Guyen JM, et al. Heredity: a prognostic factor for acne. Dermatology. 2006;212:145–9.

    CAS  PubMed  Google Scholar 

  12. Evans DM, Kirk KM, Nyholt DR, et al. Teenage acne is influenced by genetic factors. Br J Dermatol. 2005;152:565–95.

    Google Scholar 

  13. Paraskevaidis A, Drakoulis N, Roots I, et al. Polymorphisms in the human cytochrome P-450 1A1 gene (CYP1A1) as a factor for developing acne. Dermatology. 1998;196:171–5.

    CAS  PubMed  Google Scholar 

  14. Rowe JM, Welsh C, Pena RN, et al. Illuminating role of CYP1A1 in skin function. J Invest Dermatol. 2008;128:1866–8.

    CAS  PubMed  Google Scholar 

  15. Pang Y, He CD, Liu Y, et al. Combination of short CAG and GGN repeats in the androgen receptor gene is associated with acne risk in North East China. J Eur Acad Dermatol Venereol. 2008;22:1445–51.

    CAS  PubMed  Google Scholar 

  16. Yang Z, Cheng B, Tang W, et al. Relationship between the CAG repeat polymorphism in the androgen receptor gene and acne in the Han ethnic group. Dermatology. 2009;218:302–6.

    CAS  PubMed  Google Scholar 

  17. Melnik BC. Role of FGFR2 signaling in the pathogenesis of acne. Dermatoendocrinology. 2009;1(3):141–56.

    CAS  Google Scholar 

  18. Ando I, Kukita A, Soma G, Hino H. A large number of tandem repeats in the polymorphic epithelial mucon gene is associated with severe acne. J Dermatol. 1998;25:150–2.

    CAS  PubMed  Google Scholar 

  19. Carraway KL, Ramsauer VP, Haq B, Carraway CAC. Cell signaling through membrane mucins. Bioessays. 2003;25:66–71.

    PubMed  Google Scholar 

  20. Lo Celso C, Berta MA, Braun KM, et al. Characterization of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and beta-catenin. Stem Cells. 2008;26:1241–52.

    CAS  PubMed  Google Scholar 

  21. Raina D, Kharbanda S, Kufe D. The MUC1 oncoprotein activates the anti-apoptotic phosphoinositide 3-kinase/Akt and Bcl-xL pathways in rat 3Y1 fibroblasts. J Biol Chem. 2004;279:20607–12.

    CAS  PubMed  Google Scholar 

  22. Melnik BC. FoxO1 – the key for the pathogenesis and therapy of acne? J Dtsch Dermatol Ges. 2010;8:105–14.

    PubMed  Google Scholar 

  23. Szabo K, Tax G, Kis K, et al. Interleukin-1A +4845(G > T) polymorphism is a factor predisposing to acne vulgaris. Tissue Antigens. 2010;76:411–5.

    CAS  PubMed  Google Scholar 

  24. Szabo K, Tax G, Teodorescu-Brinzeu D, et al. TNFα gene polymorphism in the pathogenesis of acne vulgaris. Arch Dermatol Res. 2011;303:19–27.

    CAS  PubMed  Google Scholar 

  25. Robins T, Carlsson J, Sunnerhagen M, et al. Molcular model of human CYP21 based on mammalian CYP2C5: structural features correlate with clinical severity of mutations causing congenital adrenal hyperplasia. Mol Endocrinol. 2006;20:2946–64.

    CAS  PubMed  Google Scholar 

  26. Admoni O, Israel S, Lavi I, et al. Hyperandrogenism in carriers of CYP21 mutations: the role of genotype. Clin Endocrinol (Oxf). 2006;64:645–51.

    CAS  Google Scholar 

  27. Russell DW, Wilson JD. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994;63:25–61.

    CAS  PubMed  Google Scholar 

  28. Grino PB, Griffin JE, Wilson JD. Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology. 1990;126:1165–72.

    CAS  PubMed  Google Scholar 

  29. Andersson S, Russell DW. Structural and biochemical properties of cloned and expressed human and rat steroid 5α-reductases. Proc Natl Acad Sci USA. 1990;87:3640–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Ando Y, Yamaguchi Y, Hamada K, et al. Expression of mRNA for androgen receptor, 5 alpha-reductase, and 17beta-hydroxysteroid dehydrogenase in human dermal papilla cells. Br J Dermatol. 1999;141:840–5.

    CAS  PubMed  Google Scholar 

  31. Chen W, Zouboulis CC, Fritsch M, et al. Evidence of heterogeneity and quantitative differences of the type 1 5α-reductase expression in cultured human skin cells – first evidence of its presence in melanocytes. J Invest Dermatol. 1998;110:84–9.

    CAS  PubMed  Google Scholar 

  32. Courchay G, Boyera N, Bernard BA, Mahe Y. Messenger RNA expression of steroidogensis enzyme subtypes in the human pilosebaceous unit. Skin Pharmacol. 1996;9:169–76.

    CAS  PubMed  Google Scholar 

  33. Eicheler W, Dreher M, Hoffmann R, et al. Immunohistochemical evidence for differential distribution of 5α-reductase isozymes in human skin. Br J Dermatol. 1995;133:371–6.

    CAS  PubMed  Google Scholar 

  34. Fritsch M, Orfanos CE, Zouboulis CC. Sebocytes are the key regulators of androgen homeostasis in human skin. J Invest Dermatol. 2001;116:793–800.

    CAS  PubMed  Google Scholar 

  35. Liu S, Yamauchi H. Different patterns of 5α-reductase expression, cellular distribution, and testosterone metabolism in human follicular dermal papilla cells. Biochem Biophys Res Commun. 2008;368:858–64.

    CAS  PubMed  Google Scholar 

  36. Luu-The V, Sugimoto Y, Puy L, et al. Characterization, expression, and immunohistochemical localization of 5α-reductase in human skin. J Invest Dermatol. 1994;102:221–6.

    CAS  PubMed  Google Scholar 

  37. Sato T, Sonada T, Itami S, et al. Predominance of type 1 5alpha-reductase in apocrine sweat glands of patients with excessive or abnormal odour derived from apocrine gland (osmidrosis). Br J Dermatol. 1998;139:806–10.

    CAS  PubMed  Google Scholar 

  38. Takayasu S, Wakimoto H, Itami S, Sano S. Activity of testosterone 5α-reductase in various tissues of human skin. J Invest Dermatol. 1980;74:187–91.

    CAS  PubMed  Google Scholar 

  39. Thiele S, Hoppe U, Holterhus PM, et al. Isozyme type 1 of 5alpha-reductase is abundantly transcribed in normal human genital skin and may play an important role in masculinization of 5alpha-reductase type 2 deficient males. Eur J Endocrinol. 2005;152:875–80.

    CAS  PubMed  Google Scholar 

  40. Thigpen AE, Silver RI, Guileyyardo JM, et al. Tissue distribution and ontogeny of steroid 5α-reductase isozyme expression. J Clin Invest. 1993;92:903–10.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Zouboulis CC, Chen WC, Thornton MJ, et al. Sexual hormones in human skin. Horm Metab Res. 2007;39:85–95.

    CAS  PubMed  Google Scholar 

  42. Thiboutot D, Harris G, Iles V, et al. Activity of the type 1 5α-reductase exhibits regional differences in isolated sebaceous glands and whole skin. J Invest Dermatol. 1995;105:209–14.

    CAS  PubMed  Google Scholar 

  43. Sansone G, Reisner RM. Differential rates of conversion of testosterone to dihydrotestosterone in acne and normal human skin – a possible pathogenic factor in acne. J Invest Dermatol. 1971;56:366–71.

    CAS  PubMed  Google Scholar 

  44. Kuttenn F, Mowszowicz I, Schaison G, et al. Androgen production and skin metabolism in hirsutism. J Endocrinol. 1977;75:83–93.

    CAS  PubMed  Google Scholar 

  45. Kuttenn F, Mowszowicz I, Wright F, et al. Male pseudohermaphroditism: a comparative study of one case of 5α-reductase deficiency with three complete forms of testicular feminization. J Clin Endorinol Metab. 1979;49:861–5.

    CAS  Google Scholar 

  46. Thomas JP, Oake RJ. Androgen metabolism in the skin of hirsute women. J Clin Endocrinol Metab. 1974;38:811–9.

    Google Scholar 

  47. Mestayer C, Berthaut I, Portois MC, et al. Predominant expression of 5alpha-reductase type 1 in pubic skin from normal subjects and hirsute patients. J Clin Endocrinol Metab. 1996;81:1989–93.

    CAS  PubMed  Google Scholar 

  48. Jakimiuk AJ, Weitsman SR, Magoffin DA. 5alpha-reductase activity in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 1999;84:2414–8.

    CAS  PubMed  Google Scholar 

  49. Ellis JA, Panagiotopoulos S, Akdeniz A, et al. Androgenic correlates of genetic variation in the gene encoding 5α-reductase type 1. J Hum Genet. 2005;50:534–7.

    CAS  PubMed  Google Scholar 

  50. Goodarzi MO, Shah NA, Antoine HJ, et al. Variants in the 5alpha-reductase type 1 and type 2 genes are associated with polycystic ovary syndrome and the severety of hirsutism in affected women. J Clin Endocrinol Metab. 2006;91:4085–91.

    CAS  PubMed  Google Scholar 

  51. Horton R, Pasupuletti V, Antonipillai I. Androgen induction of 5α-reductase may be mediated via insulin-like growth factor-I. Endocrinology. 1993;133:447–51.

    CAS  PubMed  Google Scholar 

  52. Boudou P, Chivot M, Vexiau P, et al. Evidence for decreased androgen 5α reduction in skin and liver of men with severe acne after 13-cis retinoic acid treatment. J Clin Endocrinol Metab. 1994;78:1064–9.

    CAS  PubMed  Google Scholar 

  53. Melnik BC, Schmitz G. Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the pathogenesis of acne vulgaris. Exp Dermatol. 2009;18:833–41.

    CAS  PubMed  Google Scholar 

  54. Zouboulis CC. The human skin as a hormone target and an endocrine gland. Hormones. 2004;3:9–26.

    PubMed  Google Scholar 

  55. Zouboulis CC, Degitz K. Androgen action on human skin – from basic research to clinical significance. Exp Dermatol. 2004;13 Suppl 4:5–10.

    CAS  PubMed  Google Scholar 

  56. Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr Rev. 2007;28:778–808.

    CAS  PubMed  Google Scholar 

  57. Callewaert L, Christiaens V, Haelens A, et al. Implications of a polyglutamine tract in the function of the human androgen receptor. Biochem Biophys Res Commun. 2003;306:46–52.

    CAS  PubMed  Google Scholar 

  58. Lee DK, Chang C. Endocrine mechanism of disease. Expression and degradation of androgen receptor: mechanism and clinical implication. J Clin Endocrinol Metab. 2003;88:4043–54.

    CAS  PubMed  Google Scholar 

  59. Imperato-McGinley J, Gautier T, Cai LQ, et al. The androgen control of sebum production. Studies of subjects with dihydrotestosterone deficiency and complete androgen insensitivity. J Clin Endocrinol Metab. 1993;76:524–8.

    CAS  PubMed  Google Scholar 

  60. Rajender S, Singh L, Thangara K. Phenotypic heterogeneity of mutations in androgen receptor gene. Asian J Androl. 2007;9:147–9.

    CAS  PubMed  Google Scholar 

  61. Hsing AW, Gao YT, Wu G, et al. Polymorphic CAG and GGN repeat length in the androgen receptor gene and prostate cancer risk: a population-based case control study in China. Cancer Res. 2000;1518:5111–6.

    Google Scholar 

  62. Kuhlenbäumer G, Kress W, Ringelstein EB, et al. Thirty-seven CAG repeats in the androgen receptor gene in two healthy individuals. J Neurol. 2001;2481:23–6.

    Google Scholar 

  63. Platz EA, Rimm EB, Willett WC, et al. Racial variation in prostate cancer incidence and in hormonal system markers among male health professionals. J Natl Cancer Inst. 2000;92:2009–17.

    CAS  PubMed  Google Scholar 

  64. Beilin J, Ball EM, Favaloro JM, Zajac JD. Effect of the androgen receptor CAG repeat polymorphism on transcriptional activity: specificity in prostate and non-prostate cell lines. J Mol Endocrinol. 2000;25:85–96.

    CAS  PubMed  Google Scholar 

  65. Chamberlain NL, Driver ED, Miesfeld RL. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 1994;11:3181–6.

    Google Scholar 

  66. La Spada AR, Wilson EM, Lubahn DB, et al. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991;352:77–9.

    PubMed  Google Scholar 

  67. Tut TG, Ghadessy FJ, Trifiro MA, et al. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metab. 1997;82:3777–82.

    CAS  PubMed  Google Scholar 

  68. Legro RS, Shahbahrrami B, Lobo RA, et al. Size polymorphisms of the androgen receptor among female Hispanics and correlation with androgenic characteristics. Obstet Gynecol. 1994;83:701–6.

    CAS  PubMed  Google Scholar 

  69. Vottero A, Capelletti M, Giuliodori I, et al. Decreased androgen receptor gene methylation in premature pubarche: a novel pathogenetic mechanism? J Clin Endocrinol Metab. 2006;91:968–72.

    CAS  PubMed  Google Scholar 

  70. Ibanez L, Ong KK, Mongan N, et al. Androgen receptor gene CAG repeat polymorphism in the development of ovarian hyperandrogenism. J Clin Endocrinol Metab. 2003;88:3333–8.

    CAS  PubMed  Google Scholar 

  71. Hickey T, Chandy A, Norman RJ. The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J Clin Endocrinol Metabol. 2002;87:161–5.

    CAS  Google Scholar 

  72. Mifsud A, Ramirez S, Yong EL. Androgen receptor gene CAG trinucleotide repeats in anovulatory infertility and polycystic ovaries. J Clin Endocrinol Metab. 2000;85:3483–8.

    Google Scholar 

  73. Shah NA, Antoine HJ, Pall M, et al. Association of androgen receptor CAG repeat polymorphism and polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:1939–45.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Ellis JA, Stebbing M, Harrap SB. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J Invest Dermatol. 2001;116:452–5.

    CAS  PubMed  Google Scholar 

  75. Sawaya ME, Shalita AR. Androgen receptor polymorphism (CAG repeat length) in androgenetic alopecia, hirsutism, and acne. J Cutan Med Surg. 1998;3:9–15.

    CAS  PubMed  Google Scholar 

  76. Zitzmann M, Depenbusch M, Gromoll J, et al. Prostate volume and growth in testosterone-substituted hypogonadal men are dependent on the CAG repeat polymorphism of the androgen receptor gene: a longitudinal pharmacogenetic study. J Clin Endocrinol Metab. 2003;88:2049–54.

    CAS  PubMed  Google Scholar 

  77. Zitzmann M, Brune M, Kornmann B, et al. The CAG repeat polymorphism in the AR gene affects high densitiy lipoprotein cholesterol and arterial vasoreactivity. J Clin Endocrinol Metab. 2001;86:4867–73.

    CAS  PubMed  Google Scholar 

  78. Sutcliffe S, Giovannucci E, Isaacs W, et al. Acne and risk of prostate cancer. Int J Cancer. 2007;121:2688–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Hillmer AM, Hanneken S, Ritzmann S, et al. Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia. Am J Hum Genet. 2005;77:140–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Boudou P, Soliman H, Chivot M, et al. Effect of oral isotretinoin treatment on skin androgen receptor levels in male acneic patients. J Clin Endocinol Metab. 1995;80:1158–61.

    CAS  Google Scholar 

  81. Karadag AS, Ertugrul DT, Tutal E, et al. Short-term isotretinoin treatment decreases insulin-like growth factor-1 and insulin-like growth factor binding protein-3 levels: does isotretinoin affect growth hormone physiology. Br J Dermatol. 2010;162:798–802.

    CAS  PubMed  Google Scholar 

  82. Melnik BC. The role of transcription factor FoxO1 in the pathogenesis of acne vulgaris and the mode of isotretinoin action. G Ital Dermatol Venereol. 2010;145:559–72.

    CAS  PubMed  Google Scholar 

  83. Anlar B, Sullivan KA, Feldman EL. Insulin-like growth factor-I and central nervous system development. Horm Metab Res. 1999;31:120–5.

    CAS  PubMed  Google Scholar 

  84. Gallagher EJ, LeRoith D. Minireview: IGF, insulin and cancer. Endocrinology. 2011;153:2546–51.

    Google Scholar 

  85. Rudman SM, Philpott MP, Thomas GA, et al. The role of IGF-1 in human skin and its appendages: morphogen as well as mitogen. J Invest Dermatol. 1997;109:770–7.

    CAS  PubMed  Google Scholar 

  86. Clemmons DR. Modifying IGF1 activity: an approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev. 2007;6:821–33.

    CAS  Google Scholar 

  87. Baquedano MS, Berensztein E, Saraco N, et al. Expression of the IGF system in human adrenal tissues from early infancy to late puberty: implications for the development of adrenarche. Pediatr Res. 2005;58:451–8.

    CAS  PubMed  Google Scholar 

  88. Deplewski D, Rosenfield RL. Growth hormone and insulin-like growth factors have different effects on sebaceous cell growth and differentiation. Endocrinology. 1999;140:4089–94.

    CAS  PubMed  Google Scholar 

  89. Cappel M, Mauger D, Thiboutot D. Correlation between serum levels of insulin-like growth factor 1, dehydroepiandrosterone sulfate, and dihydrotestosterone and acne lesion counts in adult women. Arch Dermatol. 2005;141:333–8.

    CAS  PubMed  Google Scholar 

  90. Vora S, Ovhal A, Jerajani H, et al. Correlation of facial sebum to serum insulin-like growth factor-1 in patients with acne. Br J Dermatol. 2008;159:990–1.

    CAS  PubMed  Google Scholar 

  91. Cara JF. Insulin-like growth factors, insulin-like growth factor binding proteins and ovarian androgen production. Horm Res. 1994;42:49–54.

    CAS  PubMed  Google Scholar 

  92. De Mellow JS, Handelsman DJ, Baxter RC. Short-term exposure to insulin-like growth factors stimulates testosterone production by testicular intestinal cells. Acta Endocrinol. 1987;115:483–9.

    PubMed  Google Scholar 

  93. l’Allemand D, Penhoat A, Lebrethon MC, et al. Insulin-like growth factors enhance steroidogenic enzymes and corticotrophin receptor messenger ribonucleic acid levels and corticotrophin steroidogenic responsiveness in cultured human adrenocortical cells. J Clin Endocrinol Metabol. 1996;81:3892–7.

    Google Scholar 

  94. Mesiano S, Katz SL, Lee JY, et al. Insulin-like growth factors augment steroid production and expression of steroidogeneic enzymes in human fetal adrenal cortical cells: implications for adrenal androgen regulation. J Clin Endocrinol Metab. 1997;82:1390–6.

    CAS  PubMed  Google Scholar 

  95. Naaman E, Chatelain P, Saez JM, et al. In vitro effect of insulin and insulin-like growth factor-I on cell multiplication and adrenocorticotopin responsiveness of fetal adrenal cells. Biol Reprod. 1989;40:570–7.

    CAS  PubMed  Google Scholar 

  96. Pham-Huu-Trung MT, Villette JM, Bogyo A, et al. Effects of insulin-like growth factor I (IGF-I) on enzymatic activity in human adrenocortical cells. Interactions with ACTH. J Steroid Biochem Mol Biol. 1991;39:903–9.

    CAS  PubMed  Google Scholar 

  97. Fan WQ, Yanase T, Morinaga H, et al. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interaction of Foxo1 with androgen receptor. J Biol Chem. 2007;282:7329–38.

    CAS  PubMed  Google Scholar 

  98. Ma Q, Fu W, Li P, et al. FoxO1 mediates PTEN suppression of androgen receptor N- and C-terminal interactions and coactivator recruitment. Mol Endocrinol. 2009;23:213–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Cordain L, Lindeberg S, Hurtado M, et al. Acne vulgaris. A disease of Western civilization. Arch Dermatol. 2002;138:1584–90.

    PubMed  Google Scholar 

  100. Spencer EH, Ferdowsian HR, Barnard ND. Diet and acne: a review of the evidence. Int J Dermatol. 2009;48:339–47.

    CAS  PubMed  Google Scholar 

  101. Adebamowo CA, Spiegelman D, Berkey CS, et al. Milk consumption and acne in adolescent girls. Dermatol Online J. 2006;12(4):1–12.

    PubMed  Google Scholar 

  102. Adebamowo CA, Spiegelman D, Berkey CS, et al. Milk consumption and acne in teenaged boys. J Am Acad Dermatol. 2008;58:787–93.

    PubMed  Google Scholar 

  103. Melnik BC. Evidence for acne-promoting effects of milk and other insulinotropic dairy products. Nestle Nutr Workshop Ser Pediatr Program. 2011;67:131–45.

    CAS  PubMed  Google Scholar 

  104. Melnik BC, John SM, Schmitz G. Over-stimulation of insulin/IGF-1 signaling by Western diet may promote diseases of civilization: lessons learnt from Laron syndrome. Nutr Metab (Lond). 2011;8:41.

    CAS  Google Scholar 

  105. Smith R, Mann N, Braue A, et al. The effect of a high protein, low glycemic load diet versus a conventional, high glycemic load diet on biochemical parameters associated with acne vulgaris. J Am Acad Dermatol. 2007;57:247–56.

    PubMed  Google Scholar 

  106. Crowe FL, Key TJ, Allen NE, et al. The association between diet and serum concentrations of IGF-I, IGFBP-1, IGFBP-2, and IGFBP-3 in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2009;18:1333–40.

    CAS  PubMed  Google Scholar 

  107. Hoppe C, Molgaard C, Juul A, et al. High intakes of skimmed milk, but not meat increase serum IGF-I and IGFBP-3 in eight-year-old boys. Eur J Clin Nutr. 2004;58:1211–6.

    CAS  PubMed  Google Scholar 

  108. Rich-Edwards JW, Ganmaa D, Pollak MN, et al. Milk consumption and the prepubertal somatotropic axis. Nutr J. 2007;6:28.

    PubMed Central  PubMed  Google Scholar 

  109. Chalmers RJG, Ead RD, Beck MH. Acne vulgaris and hidradenitis suppurativa as presenting features of acromegaly. Br Med J. 1983;287:1346–7.

    CAS  Google Scholar 

  110. Chen W, Obermayer-Pietsch B, Hong JB, et al. Acne-associated syndromes: models for better understanding of acne pathogenesis. J Eur Acad Dermatol Venereol. 2011;25(6):637–46. doi:10.1111/j.1468-3083.2010.03937.x.

    CAS  PubMed  Google Scholar 

  111. Druckmann R, Rohr UD. IGF-1 in gynaecology and obstetrics: update 2002. Maturitas. 2002;41 Suppl 1:S65–83.

    CAS  PubMed  Google Scholar 

  112. Jain K, Jain VK, Aggarwal K, Bansal A. Late onset isotretinoin resistant acne conglobata in a patient with acromegaly. Indian J Dermatol Venereol Leprol. 2008;74:139–41.

    PubMed  Google Scholar 

  113. Norman RJ, Dewailly D, Legro RS, et al. Polycystic ovary syndrome. Lancet. 2007;370:685–97.

    CAS  PubMed  Google Scholar 

  114. van Dessel HJHMT, Lee PDK, Faessen G, et al. Elevated serum levels of free insulin-like growth factor I in polycystic ovary syndrome. J Clin Endocrinol Metab. 1999;84:3030–5.

    Google Scholar 

  115. Chang Y, Wang L, Lu X, et al. KGF induces lipogenic genes through a PI3K and JNK/SREBP-1 pathway in H292 cells. J Lipid Res. 2005;46:2624–35.

    CAS  PubMed  Google Scholar 

  116. Tsang M, Dawid IB (2004) Promotion and attenuation of FGF signaling through the ras-MAPK pathway. Sci STKE 2004(228):pe17. www.stke.org/cgi/content/full/sigtrans;2004/228/pe17

  117. Smith TM, Gilliland K, Clawson GA, Thiboutot D. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J Invest Dermatol. 2008;128:1286–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Melnik BC. Acneigenic stimuli converge in phosphoinositol-3 kinase/Akt/FoxO1 signal transduction. J Clin Exp Dermatol. 2010;1(101):1–8.

    Google Scholar 

  119. Eichenfield LF, Leyden JJ. Acne: current concepts of pathogenesis and approach to rational treatment. Pediatrician. 1991;18:218–23.

    CAS  PubMed  Google Scholar 

  120. Thiboutot DM. Acne: an overview of clinical research findings. Adv Clin Res. 1997;15:97–109.

    CAS  Google Scholar 

  121. Zouboulis CC, Xia L, Akamatsu H, et al. The human sebocyte culture model provides new insights into development and management of seborrhea and acne. Dermatology. 1998;196:21–31.

    CAS  PubMed  Google Scholar 

  122. Harrela M, Koistinen H, Kaprio J, et al. Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest. 1996;98:2612–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Verhaeghe J, Loos R, Vlietinck R, et al. C-peptide, insulin-like growth factors I and II, insulin-like growth factor binding protein-1 in cord serum of twins: genetic versus environmental regulation. Am J Obstet Gynecol. 1996;175:1180–8.

    CAS  PubMed  Google Scholar 

  124. Rosen CJ, Kurland ES, Vereault D, et al. Association between serum insulin growth factor-I (IGF-I) and a simple sequence repeat in IGF-I gene: implications for genetic studies of bone mineral density. J Clin Endocrinol Metab. 1998;83:2286–90.

    CAS  PubMed  Google Scholar 

  125. Rotwein P, Pollock KM, Didier DK, et al. Organization and sequence of the human insulin-like growth factor I gene. Alternative RNA processing produces two insulin-like growth factor I precursor peptides. J Biol Chem. 1986;261:4828–32.

    CAS  PubMed  Google Scholar 

  126. Denley A, Cosgrove LJ, Booker GW, et al. Molecular interactions of the IGF system. Cytokine Growth Factor Rev. 2005;16:421–39.

    CAS  PubMed  Google Scholar 

  127. Fürstenberger G, Senn H-J. Insulin-like growth factors and cancer. Lancet Oncol. 2002;3:298–302.

    PubMed  Google Scholar 

  128. Hembree JR, Harmon CS, Nevins TD, et al. Regulation of human dermal papilla cell production of insulin-like growth factor binding protein-3 by retinoic acid, glucocorticoids, and insulin-like growth factor-1. J Cell Physiol. 1996;167:556–61.

    CAS  PubMed  Google Scholar 

  129. Nelson AM, Zhao W, Gilliland KL, et al. Neutrophil gelatinase-associated lipocalin mediates 13-cis retinoic acid-induced apoptosis of human sebaceous gland cells. J Clin Invest. 2008;118:1468–78.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Lee KW, Cohen P. Nuclear effects: unexpected intracellular actions of insulin-like growth factor binding protein-3. J Endocrinol. 2002;175:33–40.

    CAS  PubMed  Google Scholar 

  131. Liu B, Lee HY, Weinzimer SA, et al. Direct functional interactions between insulin-like growth factor-binding protein-3 and retinoid X receptor-α regulate transcriptional signaling and apoptosis. J Biol Chem. 2000;275:33607–13.

    CAS  PubMed  Google Scholar 

  132. Van der Heide LP, Hoekman MF, Smid MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004;380:297–309.

    Google Scholar 

  133. Edmondson SR, Thumiger SP, Kaur P, et al. Insulin-like growth factor binding protein-3 (IGFBP-3) localizes to and modulates proliferative epidermal keratinocytes in vivo. Br J Dermatol. 2005;152:225–30.

    CAS  PubMed  Google Scholar 

  134. Plewig G, Fulton JE, Kligman AM. Cellular dynamics of comedo formation in acne vulgaris. Arch Dermatol Forsch. 1971;242:12–29.

    CAS  PubMed  Google Scholar 

  135. Cheng Z, White MF. Targeting forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid Redox Signal. 2011;14:649–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Yanase T, Fan WQ. Modification of androgen receptor function by IGF-1 signaling: implications in the mechanism of refractory prostate carcinoma. Vitam Horm. 2009;80:649–66.

    CAS  PubMed  Google Scholar 

  137. Bonafe M, Olivieri F. Genetic polymorphism in long-lived people: cues for the presence of an insulin/IGF-pathway-dependent network affecting human longevity. Mol Cell Endocrinol. 2009;299:118–23.

    CAS  PubMed  Google Scholar 

  138. Li Y, Wang WJ, Cao H, et al. Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese poulations. Hum Mol Genet. 2009;18:4897–904.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Ben-Amitai D, Laron Z. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. J Eur Acad Dermatol Venereol. 2011;25(8):950–4. doi:10.1111/j.1468-3083.2010.03896.x.

    CAS  PubMed  Google Scholar 

  140. Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3:1–9.

    Google Scholar 

  141. Steuerman R, Shevah O, Laron Z. Congenital IGF-I deficiency tends to confer protection against post-natal development of malignancies. Eur J Endocrinol. 2011;164:485–9.

    CAS  PubMed  Google Scholar 

  142. Chen W, Yang CC, Sheu H-M, et al. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. J Invest Dermatol. 2003;121:441–7.

    CAS  PubMed  Google Scholar 

  143. Makrantonaki E, Zouboulis CC. Testosterone metabolism to 5α-dihydrotestosterone and synthesis of sebaceous lipids is regulated by the peroxisome proliferators-activated receptor ligand linoleic acid in human sebocytes. Br J Dermatol. 2007;156:428–32.

    CAS  PubMed  Google Scholar 

  144. Akimoto N, Sato T, Iwata C, et al. Expression of perilipin A on the surface of lipid droplets increases along with the differentiation of hamster sebocytes in vivo and in vitro. J Invest Dermatol. 2005;124:1127–33.

    CAS  PubMed  Google Scholar 

  145. Alestas T, Ganceviciene R, Fimmel S, et al. Enzymes involved in the biosnythesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med. 2006;84:75–87.

    CAS  PubMed  Google Scholar 

  146. Downie MM, Sanders DA, Maier LM, et al. Peroxisome proliferator-activated receptor and farnesoid X receptor ligands differentially regulate sebaceous differentiation in human sebaceous organ cultures in vitro. Br J Dermatol. 2004;151:766–75.

    CAS  PubMed  Google Scholar 

  147. Kim MJ, Deplewski D, Ciletti N, et al. Limited cooperation between peroxisome proliferator-activated receptors and retinoid X receptor agonists in sebocyte growth and development. Mol Genet Metab. 2001;74:362–9.

    CAS  PubMed  Google Scholar 

  148. Kuenzli S, Saurat JH. Peroxisome proliferator-activated receptors in cutaneous biology. Br J Dermatol. 2003;149:229–36.

    CAS  PubMed  Google Scholar 

  149. Mao-Qiang M, Fowler AJ, Schmuth M, et al. Peroxisome-proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation. J Invest Dermatol. 2004;123:305–12.

    CAS  PubMed  Google Scholar 

  150. Michalik L, Wahli W. Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochim Biophys Acta. 2007;1771:991–8.

    CAS  PubMed  Google Scholar 

  151. Rosenfield RL, Kentsis A, Deplewski D, Ciletti N. Rat preputial sebocyte differentiation involves peroxisome proliferator-activated receptors. J Invest Dermatol. 1999;112:226–32.

    CAS  PubMed  Google Scholar 

  152. Smith KJ, Dipreta E, Skelton H. Peroxisomes in dermatology. Part I. J Cutan Med Surg. 2001;5:231–43.

    CAS  PubMed  Google Scholar 

  153. Smith KJ, Dipreta E, Skelton H. Peroxisomes in dermatology. Part II. J Cutan Med Surg. 2001;5:315–22.

    CAS  PubMed  Google Scholar 

  154. Jiang YL, Lu B, Kim P, et al. PPAR and LXR activators regulate ABCA12 expression in human keratinocytes. J Invest Dermatol. 2008;128:104–9.

    CAS  PubMed  Google Scholar 

  155. Hong I, Lee MH, Na TY, et al. LXRalpha enhances lipid synthesis in SZ95 sebocytes. J Invest Dermatol. 2008;128:1266–72.

    CAS  PubMed  Google Scholar 

  156. Westergaard M, Henningsen J, Svendsen ML, et al. Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid. J Invest Dermatol. 2001;116:702–12.

    CAS  PubMed  Google Scholar 

  157. Wrobel A, Seltmann H, Fimmel S, et al. Differentiation and apoptosis in human immortalized sebocytes. J Invest Dermatol. 2003;120:175–81.

    CAS  PubMed  Google Scholar 

  158. Schmitz G, Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res. 2008;47:147–55.

    CAS  PubMed  Google Scholar 

  159. Schmuth M, Watson RE, Deplewski D, et al. Nuclear hormone receptors in human skin. Horm Metab Res. 2007;39:96–105.

    CAS  PubMed  Google Scholar 

  160. Rosen ED, Sarraf P, Troy AE, et al. Ppar gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4:611–7.

    CAS  PubMed  Google Scholar 

  161. Trivedi NR, Cong Z, Nelson AM, et al. Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol. 2006;126:2002–9.

    CAS  PubMed  Google Scholar 

  162. Lee WJ, Jung HD, Lee HJ, et al. Influence of substance-P on cultured sebocytes. Arch Dermatol Res. 2008;300:311–6.

    CAS  PubMed  Google Scholar 

  163. Ottaviani M, Alestas T, Flori E, et al. Peroxidated squalene induces the production of inflammatory mediators in HaCaT keratincytes: a possible role in acne vulgaris. J Invest Dermatol. 2006;126:2430–7.

    CAS  PubMed  Google Scholar 

  164. Dobrosi N, Tóth BI, Nagy G, et al. Endocannabinoids enhance lipid synthesis and apoptosis of human sebocytes via cannabinoid receptor-2-mediated signaling. FASEB J. 2008;22:3685–95.

    CAS  PubMed  Google Scholar 

  165. Hahn S, Fingerhut A, Khomtsiv U, et al. The peroxisome proliferator activated receptor gamma Pro12 Ala polymorphism is associated with a lower hirsutism score and increased insulin sensitivity in women with polycystic ovary syndrome. Clin Endocrinol (Oxf). 2005;62:573–9.

    CAS  Google Scholar 

  166. Yilmaz M, Ergün MA, Karakoc A, et al. Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma gene in first-degree relatives of subjects with polycystic ovary syndrome. Gynecol Endocrinol. 2005;21:206–10.

    CAS  PubMed  Google Scholar 

  167. Antoine HJ, Pall M, Trader BC, et al. Genetic variants in peroxisome proliferator-activated receptor-gamma influence insulin resistance and testosterone levels in normal women but not those with polycystic ovary syndrome. Fertil Steril. 2007;87:862–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association stdy of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Yong EL, Li J, Liu MH. Single gene contributions: genetic variants of peroxisome proliferator-activated receptor (isoforms α, β/δ, and γ) and mechanisms of dyslipidemias. Curr Opin Lipidol. 2008;19:106–12.

    CAS  PubMed  Google Scholar 

  170. Armoni M, Harel C, Karni S, et al. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem. 2006;281:19881–91.

    CAS  PubMed  Google Scholar 

  171. Dowell P, Otto TC, Adi S, et al. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem. 2003;278:45485–91.

    CAS  PubMed  Google Scholar 

  172. Fan W, Imamura T, Sonoda N, et al. FOXO1 transrepresses peroxisome proliferator-activated receptor gamma transactivation, coordinating an insulin-induced feed-forward response in adipocytes. J Biol Chem. 2009;284:12188–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  173. Kamei Y, Miura S, Suganami T, et al. Regulation of SREBP1c gene expression in skeletal muscle: role of retinoid X receptor/liver X receptor and forkhead-O1 transcription factor. Endocrinology. 2008;149:2293–305.

    CAS  PubMed  Google Scholar 

  174. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–49.

    CAS  PubMed  Google Scholar 

  175. Orr-Urtreger A, Bedfort MT, Burakova T, et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol. 1993;158:475–86.

    CAS  PubMed  Google Scholar 

  176. De Giorgi V, Sestini S, Massi D, et al. Keratinocyte growth factor receptors. Dermatol Clin. 2007;25:477–85.

    PubMed  Google Scholar 

  177. Grose R, Fantl V, Werner S, et al. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J. 2007;26:1268–127835.

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Kuslak SL, Thielen JL, Marker PC. The mouse seminal vesicle shape mutation is allelic with Fgfr2. Development. 2007;134:557–65.

    CAS  PubMed  Google Scholar 

  179. Petiot A, Conti FJ, Grose R, et al. A crucial role for Fgfr2-IIIb signalling in epidermal development and hair follicle patterning. Development. 2003;130:5493–501.

    CAS  PubMed  Google Scholar 

  180. Werner S, Smola H, Liao X, et al. The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science. 1994;266:819–22.

    CAS  PubMed  Google Scholar 

  181. Anderson J, Burns HD, Enriquez-Harris P, et al. Apert syndrome mutations in fibroblast growth factor receptor 2 exhibit increased affinity for FGF ligand. Hum Mol Genet. 1998;7:1475–83.

    CAS  PubMed  Google Scholar 

  182. Wilkie AOM, Slaney SF, Olbridge M, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9:165–72.

    CAS  PubMed  Google Scholar 

  183. Ibrahimi OA, Eliseekova AV, Plotnikov AN, et al. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci USA. 2001;98:7182–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Lomri A, Lemonnier J, Delannoy P, et al. Increased expression of protein kinase Cα, interleukin-1α, and RhoA guanosine 5′-triphsophatase in osteoblasts expressing the Ser252Trp fibroblast growth factor 2 Apert mutation: identification by analysis of complementary DNA microarray. J Bone Miner Res. 2001;16:705–12.

    CAS  PubMed  Google Scholar 

  185. Ahmed Z, Schuller AC, Suhling K, et al. Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling. Biochem J. 2008;413:37–49.

    CAS  PubMed  Google Scholar 

  186. Melnik B, Schmitz G. FGFR2 signaling and the pathogenesis of acne. J Dtsch Dermatol Ges. 2008;6:721–8.

    PubMed  Google Scholar 

  187. Melnik BC, Schmitz G, Zouboulis CC. Anti-acne agents attenuate FGFR2 signal transduction in acne. J Invest Dermatol. 2009;129:1868–77.

    CAS  PubMed  Google Scholar 

  188. Munro CS, Wilkie AOM. Epidermal mosaicism producing localized acne: somatic mutation in FGFR2. Lancet. 1998;352:704–5.

    CAS  PubMed  Google Scholar 

  189. Melnik B, Vakilzadeh F, Aslanidis C, et al. Unilateral segmental acneiform nevus – a model disorder towards understanding FGFR2 function in acne? Br J Dermatol. 2008;158:1397–9.

    CAS  PubMed  Google Scholar 

  190. Chowdhary BP, Gustavsson I, Wikberg JE, et al. Localization of the human melanocortin-5 receptor gene (MC5R) to chromosome band 18p11.2 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1995;68:79–81.

    CAS  PubMed  Google Scholar 

  191. Gantz I, Shimoto Y, Konda Y, et al. Molecular cloning, expression, and characterization of a fifth melanocortin receptor. Biochem Biophys Res Commun. 1994;200:1214–20.

    CAS  PubMed  Google Scholar 

  192. Chiang C, Swan RZ, Grachtchouk M, et al. Essential role for sonic hedgehog during hair follicle morphogenesis. Dev Biol. 1999;205:1–9.

    CAS  PubMed  Google Scholar 

  193. Zhang L, Li W-H, Anthonavage M, Eisinger M. Melanocortin-5 receptor: a marker of human sebocyte differentiation. Peptides. 2006;27:413–20.

    PubMed  Google Scholar 

  194. Zhang L, Anthonavage M, Huang Q, et al. Proopiomelanocortin peptides and sebogenesis. Ann N Y Acad Sci. 2003;994:154–61.

    CAS  PubMed  Google Scholar 

  195. Chen W, Kelly MA, Opitz-Araya X, et al. Exocrine gland dysfuction in MC5R-deficient mice: evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell. 1997;91:789–98.

    CAS  PubMed  Google Scholar 

  196. Thody AJ, Shuster S. Control of sebaceous gland function in the rat by alpha-melanocyte-stimulating hormone. J Endocrinol. 1975;64:503–10.

    CAS  PubMed  Google Scholar 

  197. Thody AJ, Cooper MF, Bowden PE, et al. Effect of alpha-melanocyte-stimulating hormone and testosterone on cutaneous and modified sebaceous glands in the rat. J Endocrinol. 1976;71:279–88.

    CAS  PubMed  Google Scholar 

  198. Böhm M, Luger TA, Tobin DJ, García-Borrón JC. Melanocortin receptor ligands: new horizons for skin biology and clinical dermatology. J Invest Dermatol. 2006;126:1966–75.

    PubMed  Google Scholar 

  199. Allen M, Grachtchouk M, Sheng H, et al. Hedgehog signaling regulates sebaceous gland development. Am J Pathol. 2003;163:2173–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  200. Revest JM, Spencer-Dene B, Kerr K, et al. Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, Bmp4. Dev Biol. 2001;231:47–62.

    CAS  PubMed  Google Scholar 

  201. Goyette P, Allan D, Peschard P, et al. Regulation of Gli activity by all-trans retinoic acid in mouse keratinocytes. Cancer Res. 2000;60:5386–9.

    CAS  PubMed  Google Scholar 

  202. Flanagan N, Healy E, Ray A, et al. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum Mol Genet. 2000;9:2531–7.

    CAS  PubMed  Google Scholar 

  203. Gantz I, Yamada T, Tashiro T, et al. Mapping of the gene encoding the melanocortin-1 (alpha-melanocyte stimulating hormone) receptor (MC1R) to human chromosome 16q24.3 by fluorescence in situ hybridization. Genomics. 1994;19:394–5.

    CAS  PubMed  Google Scholar 

  204. Landi MT, Bauer J, Pfeiffer RM. MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006;313:521–2.

    CAS  PubMed  Google Scholar 

  205. Mountjoy KG, Robbins LS, Mortrud MT, et al. The cloning of a family of genes that encode the melanocortin receptors. Science. 1992;257:1248–51.

    CAS  PubMed  Google Scholar 

  206. Böhm M, Schiller M, Ständer S, et al. Evidence for expression of melanocortin-1 receptor in human sebocytes in vitro and in situ. J Invest Dermatol. 2002;118:533–9.

    PubMed  Google Scholar 

  207. Ganceviviene R, Graziene V, Böhm M, et al. Increased in situ expression of melanocortin-1 receptor in sebaceous glands of lesional skin of patients with acne. Exp Dermatol. 2007;16:547–52.

    Google Scholar 

  208. Bastiaens MT, ter Huurne JAC, Kielich C. Melanocortin-1 receptor gene variants determine the risk of nonmelanoma skin cancer independently of fair skin and red hair. Am J Hum Genet. 2001;68:884–94.

    PubMed Central  CAS  PubMed  Google Scholar 

  209. Mogil JS, Ritchie J, Smith SB. Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans. J Med Genet. 2005;42:583–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Nakayama K, Soemantri A, Jin F, et al. Identification of novel functional variants of the melanocortin 1 receptor gene originated from Asians. Hum Genet. 2006;119:322–30.

    CAS  PubMed  Google Scholar 

  211. Palmer JS, Duffy DL, Box NF. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am J Hum Genet. 2000;66:176–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Kim MS, Pak YK, Jang PG, et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci. 2006;9:901–6.

    CAS  PubMed  Google Scholar 

  213. Kitamura T, Feng Y, Kitamura YI, et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med. 2006;12:534–40.

    CAS  PubMed  Google Scholar 

  214. Sasaki T, Kitamura T. Roles of FoxO1 and Sirt1 in the central regulation of food intake. Endocr J. 2010;57:939–46.

    CAS  PubMed  Google Scholar 

  215. Karadag AS, Ertugrul DT, Tutal E, et al. Isotretinoin influences pituitary hormone levels in acne patients. Acta Derm Venereol. 2011;91:31–4.

    PubMed  Google Scholar 

  216. Kang S, Cho S, Chung JH, et al. Inflammation and extracellular matrix degradation mediated by activated transcription factors nuclear factor-κB and activator protein-1 in inflammatory acne lesions in in vivo. Am J Pathol. 2005;166:1691–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  217. Steinberg Z, Myers C, Heim VM, et al. FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis. Development. 2005;132:1223–34.

    CAS  PubMed  Google Scholar 

  218. Trivedi NR, Gilliland KI, Zhao W, et al. Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J Invest Dermatol. 2006;126:1071–9.

    CAS  PubMed  Google Scholar 

  219. Choi J-Y, Piao MS, Lee J-B, et al. Propionibacterium acnes stimulates pro-matrix metalloproteinase-2 expression through tumor necrosis factor-α in human dermal fibroblasts. J Invest Dermatol. 2008;128:846–54.

    CAS  PubMed  Google Scholar 

  220. Papakonstantinou E, Aletras AJ, Glass E, et al. Matrix metalloproteinases of epithelial origin in facial sebum of patients with acne and their regulation by isotretinoin. J Invest Dermatol. 2005;125:673–84.

    CAS  PubMed  Google Scholar 

  221. Abid MR, Shih SC, Otu HH, et al. A novel class of vascular endothelial growth factor-responsive genes that require forkhead activity for expression. J Biol Chem. 2006;281:35544–53.

    CAS  PubMed  Google Scholar 

  222. Ganapathy S, Chen Q, Singh KP, et al. Resveratrol enhances antitumor activity of TRAIL in prostate cancer xenografts through activation of FOXO transcription factor. PLoS One. 2010;5:e15627.

    PubMed Central  CAS  PubMed  Google Scholar 

  223. Kikuno N, Shiina H, Urakami S, et al. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene. 2007;26:7647–55.

    CAS  PubMed  Google Scholar 

  224. Li H, Liang J, Castrillon DH, et al. FoxO4 regulates tumor necrosis factor alpha-directed smooth muscle cell migration by activating matrix metalloproteinase 9 gene transcription. Mol Cell Biol. 2007;27:2676–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Tanaka H, Murakami Y, Ishii I, et al. Involvement of a forkhead transcription factor, FOXO1A, in UV-induced changes of collagen metabolism. J Investig Dermatol Symp Proc. 2009;14:60–2.

    CAS  PubMed  Google Scholar 

  226. Dejean AS, Hedrick SM, Kerdiles YM. Highly specialized role of Foxo transcription factors in the immune system. Antioxid Redox Signal. 2011;14:663–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  227. Thoma-Uszynsgi S, Stenger S, Takeucho O, et al. Induction of direct antimicrobial acivity through mammalian toll-like receptors. Science. 2001;291:1544–7.

    Google Scholar 

  228. Jugeau S, Tenaud I, Knol AC, et al. Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol. 2005;153:1109–13.

    Google Scholar 

  229. Kim J, Ochoa MT, Krutzik SR, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169:1535–41.

    CAS  PubMed  Google Scholar 

  230. Nagy I, Pivarcsi A, Koreck A, et al. Distinct strains of Propionibacterium acnes indcuce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol. 2005;124:931–9.

    CAS  PubMed  Google Scholar 

  231. Kim J. Review of the innate immune response in acne vulgaris: Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology. 2005;211:193–8.

    CAS  PubMed  Google Scholar 

  232. Koreck A, Kis K, Szegedi K, et al. TLR2 and TLR4 polymorphisms are not associated with acne vulgaris. Dermatology. 2006;213:267–9.

    CAS  PubMed  Google Scholar 

  233. Gan L, Li L. Regulations and roles of the interleukin-1 receptor associated kinases (IRAKs) in innate and adaptive immunity. Immunol Res. 2006;35:295–302.

    CAS  PubMed  Google Scholar 

  234. Liu PT, Krutzik SR, Kim J, et al. Cutting edge: all-trans retinoic acid down-regulates TLR2 expression and function. J Immunol. 2005;174:2467–70.

    CAS  PubMed  Google Scholar 

  235. Nantermet P, Xu J, Yu Y, et al. Indentification of genetic pathways activated by the androgen receptor during the induction of proliferation in the ventralprostate gland. J Biol Chem. 2004;279:1310–22.

    CAS  PubMed  Google Scholar 

  236. Klinger B, Anin S, Silbergeld A, et al. Development of hyperandrogenism during treatment with insulin-like growth hormone factor-I (IGF-I) in female patients with Laron syndrome. Clin Endocrinol. 1998;48:81–7.

    CAS  Google Scholar 

  237. Niemann C. Differentiation of the sebaceous gland. Dermatoendocrinology. 2009;1:64–7.

    CAS  Google Scholar 

  238. Niemann C, Unden AB, Lyle S, et al. Indian hedgehog and β-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci USA. 2003;100:11837–80.

    Google Scholar 

  239. Essers MA, de Vries-Smits LM, Barker N, et al. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 2005;308:1181–4.

    CAS  PubMed  Google Scholar 

  240. Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120:2479–87.

    CAS  PubMed  Google Scholar 

  241. Hoogeboom D, Essers MAG, Polderman PE, et al. Interaction of FOXO with β-catenin inhibits β-catenin/T cell factor activity. J Biol Chem. 2008;283:9224–30.

    CAS  PubMed  Google Scholar 

  242. Jin T, Fantus GI, Sun J. Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of β-catenin. Cell Signal. 2008;20:1697–704.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo C. Melnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melnik, B.C. (2014). Acne and Genetics. In: Zouboulis, C., Katsambas, A., Kligman, A. (eds) Pathogenesis and Treatment of Acne and Rosacea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69375-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69375-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69374-1

  • Online ISBN: 978-3-540-69375-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics