Skip to main content

Microbial Activity in Frozen Soils

  • Chapter
Permafrost Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 16))

This chapter is a review on metabolic activity of microorganisms in permafrost and frozen tundra soils. Several noteworthy limitations resulted from critical analysis of available techniques, in particular regarding soil respiration: the apparent CO2 flux from frozen soil was shown to overestimate the actual microbial activity due to abiotic release of CO2 accumulated in the sample. Even acidic non-carbonaceous soils contain a large pool (up to 40% of the total soil C) of bound CO2 overlooked by soil chemists. The method of choice seems to be 14CO2 uptake which can be used to detect separately activities of photo-, chemolitho- and chemoorganotrophic microorganisms. Permafrost allows gas exchange (D= 6.9 10-9 cm2 sec-1 for 14CO2 at – 20°C) and contains unfrozen water; these two factors are sufficient to support activity of specialized microorganisms in the temperature range 0 to – 40°C. The preferable growth substrates were shown to be gases and volatiles (ethanol, methane). A new cultivation approach based on the use of solid frozen media was developed as a substitute of traditional liquid media with antifreezes. Enrichments were grown on the solid ethanol-microcrystal cellulose powder frozen to – 8°C. Several organisms able to grow in frozen media without antifreezes were isolated from Alaskan permafrost including novel bacterial species (Polaromonas hydrogenovorans, Pseudmonas sp, and Arthrobacter sp.) as well as basidiomycetous yeasts (order Leucosporidiales) and mycelial fungi of the family Stereaceae. The last organisms turned out to be able active down to – 25°C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DM (1967) Ice nucleation and the substrate-ice interface. Nature 216:563–566

    Article  CAS  Google Scholar 

  • Bakermans C, Nealson KH (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol 186:2340–2345

    Article  PubMed  CAS  Google Scholar 

  • Becker RE, Volkmann CM (1961) A preliminary report on the bacteriology of permafrost in the Fairbanks area. Proc Alaskan Sci Conf 12:188

    Google Scholar 

  • Bielanski A, Bergeron H, Lau PCK, Devenish J (2003) Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 46:146–152

    Article  PubMed  CAS  Google Scholar 

  • Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol 47:300–304

    Article  PubMed  CAS  Google Scholar 

  • Brinkmeyer R, Knittel K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  PubMed  CAS  Google Scholar 

  • Brook EJ, Sowers T, Orchardo J (1996) Rapid variations in atmospheric methane concentration during the past 110,000 years. Science 273:1087–1091

    Article  PubMed  CAS  Google Scholar 

  • Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra: Environmental controls and relationship to inter-system C and N fluxes. Oecologia 110:403–413

    Google Scholar 

  • Callaghan TV, Bjorn LO, Chernov Y, Chapin T, Christensen TR, Huntley B, Ims RA, Johansson M, Jolly D, Jonasson S, Matveyeva N, Panikov N, Oechel W, Shaver G (2004) Uncertainties and recommendations. Ambio 33:474–479

    Article  PubMed  Google Scholar 

  • Cameron RE, Morelli FA (1974) Viable microorganisms from ancient Ross Island and Tayler Valley drill core. Antarc J USA 9:113–116

    Google Scholar 

  • Campen RK, Sowers T, Alley RB (2003) Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31:231–234

    Article  CAS  Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R (2002) Extremophiles and the search for extraterrestrial life. Astrobiology 2:281–292

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261

    Article  PubMed  CAS  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15=°C. Appl Environ Microbiol 68:6435–6438

    Article  PubMed  CAS  Google Scholar 

  • Christner B, Mosley-Thompson E, Thompson L, Reeve J (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003a) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003b) Bacterial recovery from ancient ice. Environ Microbiol 5:433–436

    Article  PubMed  CAS  Google Scholar 

  • Clein JS, Schimel JP (1995) Microbial activity of tundra and taiga soils at sub-zero temperatures. Soil Biol Biochem 27:1231–1234

    Article  CAS  Google Scholar 

  • Coyne PI, Kelley JJ (1971) Release of carbon dioxide from frozen soil to the arctic atmosphere. Nature 234:407–408

    Article  CAS  Google Scholar 

  • Dise NB (1992) Winter fluxes of methane from Minnesota peatlands. Biogeochemistry 17:71–83

    Article  CAS  Google Scholar 

  • Elberling B, Brandt KK (2003) Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling. Soil Biol Biochem 35:263–272

    Article  CAS  Google Scholar 

  • Ershov ED (1998) General geocryology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Fahnestock JT, Jones MH, Brooks PD, Walker DA, Welker JM (1998) Winter and early spring CO2 efflux from tundra communities of northern Alaska. J Geophys Res 103:29023–29027

    Article  CAS  Google Scholar 

  • Fahnestock JT, Jones MH, Welker JM (1999) Wintertime CO2 efflux from arctic soils: Implications for annual carbon budgets. Global Biogeochem Cycles 13:775–779

    Article  CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Finegold L (1996) Molecular and biophysical aspects of adaptation of life to temperatures below the freezing point. Adv Space Res 18:87–95

    Article  CAS  Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1984) The antarctic cryptoendolithic ecosystem: Relevance to exobiology. Origins Life Evol Biosphere 14:771–776

    Article  CAS  Google Scholar 

  • Geiges O (1996) Microbial processes in frozen food. Proceedings of the F3.1, F3.4, F2.4 and F3.8 Symposia of COSPAR Scientific Commission F. Adv Space Res 18:109–118

    Article  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: Biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  PubMed  CAS  Google Scholar 

  • Gill CO, Lowry PD (1982) Growth at sub-zero temperatures of black spot fungi from meat. J Appl Bacteriol 52:245–50

    PubMed  CAS  Google Scholar 

  • Gosink JJ, Staley JT (1995) Biodiversity of gas vacuolate bacteria from Antarctic sea ice and water. Appl Environ Microbiol 61:3486–9

    PubMed  CAS  Google Scholar 

  • Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomemtus comb. nov. Int J Syst Bacteriol 48:223–235

    PubMed  Google Scholar 

  • Grogan P, Chapin IFS (1999) Arctic soil respiration: Effects of climate and vegetation depend on season. Ecosystems 2:451–459

    Article  CAS  Google Scholar 

  • Head JW, Neukum G, Jaumann R, Hiesinger H, Hauber E, Carr M, Masson P, Foing B, Hoffmann H, Kreslavsky M, Werner S, Milkovich S, van Gasselt S (2005) Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature 434:346–351

    Article  PubMed  CAS  Google Scholar 

  • Helmke E, Weyland H (2004) Psychrophilic versus psychrotolerant bacteria -occurrence and significance in polar and temperate marine habitats. Cell Mol Biol 50:553–61

    PubMed  CAS  Google Scholar 

  • Hesselsoe M, Nielsen JL, Roslev P, Nielsen PH (2005) Isotope labeling and microautoradiography of active heterotrophic bacteria on the basis of assimilation of 14CO2. Appl Environ Microbiol 71:646–655

    Article  PubMed  CAS  Google Scholar 

  • Hobbie SE, Chapin FS III (1996) Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry 35:327–338

    Article  Google Scholar 

  • Irgens RL, Gosink JJ, Staley JT (1996) Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int J Syst Bacteriol 46:822–826

    PubMed  CAS  Google Scholar 

  • Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350

    Article  PubMed  CAS  Google Scholar 

  • Johnson BT, Romanenko VI (1984) Xenobiotic perturbation of microbial growth as measured by CO2 uptake in aquatic heterotrophic bacteria. J Great Lakes Res 10:245–250

    CAS  Google Scholar 

  • Junge K, Gosink JJ, Hoppe HG, Staley JT (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 21:306–314

    PubMed  CAS  Google Scholar 

  • Junge K, Imhoff F, Staley T, Deming JW (2002) Phylogenetic diversity of numerically importantArctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43:315–328

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  PubMed  CAS  Google Scholar 

  • Junge K, Eicken H, Swanson BD, Deming JW (2006) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429

    Article  PubMed  CAS  Google Scholar 

  • Kappen L (1993) Lichens in the Antarctic region. In: Friedmann EI (ed) Antarctic microbiology. Wiley, New York, pp 433–490

    Google Scholar 

  • Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of Southern Victoria Land, Antarctica. Polar Biol 1:227–232

    Article  Google Scholar 

  • Karl DM (1980) Cellular nucleotide measurements and applications in microbial ecology. Microbiol Rev 44:739–796

    PubMed  CAS  Google Scholar 

  • Kato T, Hirota M, Tang Y, Cui X, Li Y, Zhao X, Oikawa T (2005) Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai-Tibetan plateau. Soil Biol Biochem 37:1966–1969

    Article  CAS  Google Scholar 

  • Kushner D (1981) Extreme environments: Are there any limits to life? In: Ponnamperuna C (ed) Comets and the origin of life. Reidel, New York, pp 241–248

    Google Scholar 

  • Lange OL, Kappen K (1972) Photosynthesis of lichens from Antarctica. In: Antarctic Research Series 20. American Geophysical Union, Washington, DC, pp 83–95

    Google Scholar 

  • Lange OL, Metzner H (1965) Lichtabhängiger Kohlenstoff-Einbau in Flechten bei tiefen Temperaturen. Naturwissenschaften 52:2119–2123

    Google Scholar 

  • Lonhienne T, Zoidakis J, Vorgias CE, Feller G, Gerday C, Bouriotis V (2001) Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol 310:291–1297

    Article  PubMed  CAS  Google Scholar 

  • Marion GM, Fritsen CH, Eicken H, Payne MC (2003) The search for life on Europa: Limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3:785–811

    Article  PubMed  CAS  Google Scholar 

  • Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioengin 49:111–129

    Article  CAS  Google Scholar 

  • Marx JC, Blaise V, Collins T, D’Amico S, Delille D, Gratia E, Hoyoux A, Huston AL, Sonan G, Feller G, Gerday C (2004) A perspective on cold enzymes: Current knowledge and frequently asked questions. Cell Mol Biol 50:643–55

    PubMed  CAS  Google Scholar 

  • Mazur P (1980) Limits to life at low temperatures and at reduced water contents and water activities. Orig Life 10:137–159

    Article  PubMed  CAS  Google Scholar 

  • Melloh RA, Crill PM (1996) Winter methane dynamics in a temperate peatland. Global Biogeochem Cycles 10:247–254

    Article  CAS  Google Scholar 

  • Michener HD, Elliott RP (1964) Minimum growth temperatures for food-poisoning, fecal-indicator, and psychrophilic microorganisms. Adv Food Res 13:349–96

    PubMed  CAS  Google Scholar 

  • Mikan CJ, Schimel JP, Doyle AP (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    Article  CAS  Google Scholar 

  • Mooney HA, Billings WD (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol Monogr 31:1–29

    Article  Google Scholar 

  • Moore TR (1983) Winter-time litter decomposition in a subarctic woodland. Arct Alp Res 15:413–418

    Article  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Oechel WC, Vourlitis G, Hastings SJ (1997) Cold-season CO2 emission from arctic soils. Global Biogeochem Cycles 11:163–172

    Article  CAS  Google Scholar 

  • Panikov NS (1995) Microbial growth kinetics. Chapman & Hall, London, 378 pp

    Google Scholar 

  • Panikov NS (1999a) Fluxes of CO2 and CH4 in high latitude wetlands: Measuring, modeling and predicting response to climate change. Polar Res 18:237–244

    Article  Google Scholar 

  • Panikov NS (1999b) Understanding and prediction of soil microbial community dynamics under global change. Appl Soil Ecol 11:161–176

    Article  Google Scholar 

  • Panikov NS, Dedysh SN (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Biogeochem Cycles 14:1071–1080

    Article  CAS  Google Scholar 

  • Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512

    Article  PubMed  CAS  Google Scholar 

  • Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794

    Article  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  PubMed  CAS  Google Scholar 

  • Reeve CA, Amy PS, Matin A (1984) Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12. J Bacteriol 160:1041–1046

    PubMed  CAS  Google Scholar 

  • Ritzrau W (1997) Pelagic microbial activity in the Northeast Water polynya, summer 1992. Polar Biol 17:259–267

    Article  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  PubMed  CAS  Google Scholar 

  • Rivkina EM, Laurinavichus KS, Gilichinsky DA, Shcherbakova VA (2002) Methane generation in permafrost sediments. Dokl Biol Sci 383:179–181

    Article  PubMed  CAS  Google Scholar 

  • Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Romanovsky VE, Osterkamp TE (2000) Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafrost Periglac Process 11:219–239

    Article  Google Scholar 

  • Sabbah H, Biennier L, Sims IR, Georgievskii Y, Klippenstein SJ, Smith IWM (2007) Understanding reactivity at very low temperatures: The reactions of oxygen atoms with alkenes. Science 317:102–105

    Article  PubMed  CAS  Google Scholar 

  • Santruchkova H, Bird MI, Elhottova D, Novak J, Picek T, Shimek M, Tykva R (2005) Heterotrophic fixation of CO2 in soil. Microb Ecol 49:218–225

    Article  CAS  Google Scholar 

  • Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem 36:217–227

    Article  CAS  Google Scholar 

  • Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Gosink JJ (1999) Poles apart: Biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215

    Article  PubMed  CAS  Google Scholar 

  • Tanghe A, Van Dijck P, Thevelein JM (2006) Why do microorganisms have aquaporins? Trends Microbiol 14:78–85

    Article  PubMed  CAS  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (1999) Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Global Change Biol 49:679–691

    Article  Google Scholar 

  • Toll DL, Owe M, Foster J, Levine E (1999) Monitoring seasonally frozen soils using passive microwave satellite data and simulation modeling. In: Geoscience and Remote Sensing Symposium, IGARSS ’99. Proc IEEE Int 2:1149–1151

    Google Scholar 

  • Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky D, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: Facts and hypothesis. FEMS Microbiol Rev 20:277–290

    Article  CAS  Google Scholar 

  • Warren SG, Hudson SR (2003) Bacterial activity in South Pole snow is questionable. Appl Environ Microbiol 69:6340–6341

    Article  PubMed  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (1988) A CH4 time series for tundra environments. Global Biogeochem Cycles 2:399–409

    Article  CAS  Google Scholar 

  • Wolfe J, Bryant G, Koster KL (2002) What is ‘unfreezable water’, how unfreezable is it, and how much is there? Cryoletters 23:157–166

    PubMed  Google Scholar 

  • Wynn-Williams DD (1982) Simulation of seasonal changes in microbial activity of maritime Antarctic peat. Soil Biol Biochem 14:1–12

    Article  CAS  Google Scholar 

  • Xu Y, Nogi Y, Kato C, Liang Z, Ruger HJ, De Kegel D, Glansdorff N (2003) Psychromonasprofunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53:527–532

    Article  PubMed  CAS  Google Scholar 

  • Zgurskaya HI, Keyhan M, Matin A (1997) The sigma S level in starving Escherichia coli cells increases solely as a result of its increased stability, despite decreased synthesis. Mol Microbiol 24:643–651

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Davey ME, Figueras JB, Rivkina E, Gilichinsky D, Tiedje JM (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology (UK) 143:3913–3919

    Article  CAS  Google Scholar 

  • Zimov SA, Zimova GM, Davidov SP, Davidova AI, Voropaev YV, Voropaeva ZV, Prosiannikov SF, Prosiannikova OV, Semiletova IV, Semiletov IP (1993) Winter biotic activity and production of CO2 in Siberian soils: A factor in the greenhouse effect. J Geophys Res 98:5017–5023

    Article  Google Scholar 

  • Zimov SA, Schuur EAG, Chapin III FS (2006) Climate change: Permafrost and the global carbon budget. Science 312:1612–1613

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai S. Panikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Panikov, N.S. (2009). Microbial Activity in Frozen Soils. In: Margesin, R. (eds) Permafrost Soils. Soil Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69371-0_9

Download citation

Publish with us

Policies and ethics