Skip to main content

Ancient Protozoa Isolated from Permafrost

  • Chapter
Permafrost Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 16))

Permafrost is a unique environment, which is capable to protect microorganisms from the effect of adverse factors and to provide their long-term preservation. This chapter represents an overview of the distribution and biodiversity of viable forms of protozoa in the subsurface permafrost sediments of North-East Russia. A total of 200 samples of Arctic permafrost, buried soils and burrows of fossil rodents, whose age ranges from several hundred to three million years, were investigated for the presence of viable protozoa. Most of the isolated paleoprotozoans belong to species that are distributed worldwide. The authors discuss the species composition of the ancient protozoan communities in relation to different adaptive strategies for the survival of the organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson RA, Barta J, Bowser S, Brugerolle G, Fensome R, Fredericq S, James TY, Karpov SA, Kugrens P, Krug J, Lane C, Lewis LA, Lodge J, Lynn DH, Mann D, McCourt RM, Mendoza L, Moestrup O, Mozley/Standridge SE, Nerad TA, Shearer C, Smirnov AV, Spiegel F, Taylor FJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–432

    Article  PubMed  Google Scholar 

  • Auer B, Arndt H (2001) Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshwater Biol 46:959–972

    Article  Google Scholar 

  • Benitez L, Martín-Gonzalez A, Gutiérrez JC (1991) Protein glycosylation has an important role in the encystment process of the ciliate Colpoda inflata. Cell Biol Int Rep 15:221–228

    Article  CAS  Google Scholar 

  • Bobrov AA, Siegert Ch, Andreev AA, Schirrmeister L (2003) Testaceans (Protozoa: Testacea) in quaternary permafrost sediments of Bykovsky Peninsula, Arctic Yakutia. Biol Bull 30:191–206

    Article  Google Scholar 

  • Bradbury PC (1987) Protozoan adaptations for survival. In: Henis Y (ed) Survival and dormancy of microorganisms. Wiley, New York, pp 267–299

    Google Scholar 

  • Butler HG (1999) Seasonal dynamics of the planktonic microbial community in a maritime Antarctic lake undergoing eutrophication. J Plankton Res 21:2393–2419

    Article  Google Scholar 

  • Chavez-Munguia B, Omana-Molina M, Gonzalez-Lazaro M, Gonzalez-Robles A, Bonilla P, Martinez-Palomo A (2005) Ultrastructural stady of encystations and excyatation in Acanthamoeba castellanii. J Eukaryot Microbiol 52:1–6

    Article  Google Scholar 

  • Chernov YI (1984) Biologicheskije predposylki osvojenija arkticheskoj sredy organizmami raznyh taksonov. In: Chernov YI (ed) Faunogenez i filogenez. Nauka, Moscow, pp 154–174 (in Russian)

    Google Scholar 

  • Chernov YI, Matveeva NV (2002) Landscape-zonal distribution of the Arctic biota species. Adv Curr Biol 12:26-46 (in Russian)

    Google Scholar 

  • Clegg JS (1986) The physical properties and metabolic status of Anemia cysts at low water contents: the “water replacement hypothesis” In: Leopold AC (ed) Membranes, metabolism and dry organisms, 1st edn. Cornell University Press, Ithaca, pp 169–187

    Google Scholar 

  • Clegg JS (2001) Cryptobiosis — a peculiar state of biological organization. Comp Biochem Physiol 128:613–624

    Article  CAS  Google Scholar 

  • Corliss JO, Esser SC (1974) Comments on the role of the cyst in the life cycle and survival of free-living protozoa. Trans Am Microbiol Soc 93:578–583

    Article  CAS  Google Scholar 

  • De Jonckheere J (2006) Isolation and molecular identification of free-living amoebae of the genus Naegleria from Arctic and sub-Antarctic regions. Eur J Protistol 42:115–123

    Article  PubMed  Google Scholar 

  • De Jonckheere J, Van de Voorde H (1976) Differences in destruction of cysts of pathogenic and nonpathogenic Naegleria and Acanthamoeba by chlorine. Appl Environ Microbiol 31:294–297

    PubMed  Google Scholar 

  • Díaz S, Martín-González A, Borniquel S, Gutiérrez JC (2000) Cyrtolophosis elongate (Colpodea, Ciliophora): Some aspects of cilliary paterrn, division, cortical and nuclear changes during encystment and resting cyst ultrastructure. Eur J Protistol 36:367–378

    Google Scholar 

  • Ekelund F, Patterson DJ (1997) Some heterotrophic flagellates from a cultivated garden soil in Australia. Arch Protistenkd 148:461–478

    Google Scholar 

  • Foissner W (1991a) Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. Eur J Protistol 27:313–330

    Google Scholar 

  • Foissner W (1991b) Diversity and ecology of soil flagellates. In: Patterson DJ, Larsen J (eds) The biology of the free-living heterotrophic flagellates. Clarendon Press, Oxford, pp 93–112

    Google Scholar 

  • Foissner W (1992) Estimating the species richness of soil protozoa using the “non-flooded petri dish method” In: Lee RJJ, Soldo AT (eds) Protocols in protozoology. Allen Press, Lawrence, Kansas, B-10.1–B-10.2

    Google Scholar 

  • Foissner W (1993) Colpodea (Ciliophora). In: Matthes D (ed) Protozoenfauna. Fischer, Stuttgart, 777 pp

    Google Scholar 

  • Foissner W (1996) Faunistics, taxonomy and ecology of moss and soil ciliates (Protozoa, Ciliophora) from Antarctica, with description of new species, including Pleuroplitoides smithi gen.nov., sp.nov. Acta Protozool 35:95–123

    Google Scholar 

  • Frenkel MA (1987) Fine structure of the resting cysts of the ciliate Colpoda steinii. Tsitologiya 29:131–140 (in Russian)

    Google Scholar 

  • Gilichinsky D, Wilson G, Friedmann EI, McKay C, Sletten R, Erokhina L, Fyodorov-Davydov D, Hallet B, Ivanushkina N, Kochkina G, Ozerskaya S, Rivkina E, Shcherbakova V, Soina V, Sorokovikov V, Spirina E, Vishnivetskaya T, Vorobyova E, Shatilovich A, Tiedje J (2007) Microbial populations in Antarctic permafrost: Implication for astrobiology. Astrobiology 7:275–311

    Article  PubMed  CAS  Google Scholar 

  • Goldovskij AM (1986) Anabioz i jego prakticheskoje znachenije. Nauka, Leningrad, pp 169 (in Russian)

    Google Scholar 

  • Goodney T (1914) Note on the retention of viability by protozoa from old stored soils. Ann Appl Biol 1:3850–299

    Google Scholar 

  • Gubin SV (1994) Late Pleistocene soil formation in coastal Lowlands of Northern Yakutia. Pochvovedenie 8:5–14 (in Russian)

    Google Scholar 

  • Gubin SV, Zanina OG, Maksimovich SV, Kuzmina SA, Zazhigin VS (2003a) Reconstruction of ice complex sediment formation conditions on the base of Late Pleistocene rodent burrow studying. Kriosfera Zemli 7:13–22 (in Russian)

    Google Scholar 

  • Gubin SV, Maksimovich SV, Davydov SP, Gilichinsky DA, Shatilovich AV, Spirina EV, Yashina SG (2003b) The possible contribution of Late Pleistocene biota to biodiversity in present permafrost zone. Zhurnal Obschej Biologii 64:160–165 (in Russian)

    CAS  Google Scholar 

  • Guppy M, Withers PH (1999) Metabolic depression in animals: Physiological perspectives and biochemical generalizations. Biol Rev 74:1–40

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez JC, Martín-González A, Matsusaka T (1990) Towards a generalized model of encystment (cryptobiosis) in ciliates: A review and hypothesis. Biosystems 24:17–24

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez JC, Callejas S, Borniquel S, Benitez L, Martin-Gonzalez A (2001) Ciliate cryptobiosis: A microbial strategy against environmental starvation. Int Microbiol 4:151–157

    PubMed  CAS  Google Scholar 

  • Gutierrez JC, Díaz S, Ortega R, Mártin-González A (2003) Ciliate resting cyst walls: A comparative review. Recent Res Develop Microbiol 7:361–379

    CAS  Google Scholar 

  • Hausmann K, Hulsmann N (1996) Protozoology. Thieme, Stuttgart

    Google Scholar 

  • Hausmann K, Hulsmann N, Radek R (2003) Protistology. Schweizerbart’sehe Verlagsbuchhandlung, Suttgart

    Google Scholar 

  • Ikävalko J (1998) Further observations on fagellates within sea ice in northern Bothnian Bay, the Baltic Sea. Polar Biol 19:323–329

    Article  Google Scholar 

  • Ikävalko J, Grandinger R (1997) Flagellates and heliozoans in the Greenland Sea ice studied alive using light microscopy. Polar Biol 17:473–481

    Article  Google Scholar 

  • Ikävalko J, Thomsen HA, Carstens MA (1996) Preliminary study of NE Greenland shallow melt-water ponds with particular emphasis on loricate and scale-covered forms (Choanoflagellida, Chrysoficeae sensu lato, Synurophyceae, Heliozoea), including the description of Epipyxis thamnoides sp. nov. and Pseudokephyrion poculiforme sp. nov. (Chrysophyceae). Arch Protistenkd 147:29–42

    Google Scholar 

  • Izquierdo A, Martin-Gonzalez A, Díaz S, Gutiérrez JC (1999) Resting cyst wall proteins and glycoproteins of four colpodid ciliates: A comparative analysis. Microbios 99:27–43

    CAS  Google Scholar 

  • Juck DF, Whissell G, Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl Environ Microbiol 71:1035–1041

    Article  PubMed  CAS  Google Scholar 

  • Kapterev PN (1936) Ob anabioze v uslovijah vechnoj merzloty. Izv AN SSSR, Ser Biol 6:1073–1088 (in Russian)

    Google Scholar 

  • Kapterev PN (1938) Novyje materialy po ozhivleniju organizmov iz vechnoj merzloty. DAN SSSR 20:315 (in Russian)

    Google Scholar 

  • Keilin D (1959) The problem of anabiosis of latent life: History andcurrent concept. Proc R Soc London B 150:149–191

    Article  CAS  Google Scholar 

  • Khunkitti W, Lloyd D, Furr JR, Russell AD (1998) Acanthamoeba castellanii: Growth, encystment, excystment and biocide susceptibility. J Infect 36:43–48

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Turner NA, Khunkitti W, Hann AC, Furr JR, Russell AD (2001) Encystation in Acanthamoeba castellanii: Development of biocide resistance. J Eukaryot Microbiol 48:11–16

    Article  PubMed  CAS  Google Scholar 

  • Lozina-Lozinsky LK (1972) Studies on cryobiology. Nauka, Leningrad, pp 288 (in Russian)

    Google Scholar 

  • Lüftenegger G, Foissner W, Adam H (1985) r-and K-selection in soil ciliates: A field and experimental approach. Oecologia 66:574–579

    Article  Google Scholar 

  • MacArthur R (1972) Geographical ecology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Marquardt WC, Wang G-T, Fennel DI (1966) Preservation of Colpoda steinii and Valkampfia sp. from an ice tunnel in Greenland. Trans Am Microsc Soc 85:152–156

    Article  Google Scholar 

  • Matsusaka T, Hongo F (1984) Cytochemical and electrophoretic studies on the cyst wall of a ciliate Histriculus muscorum Kahl. J Protozool 31:471–475

    CAS  Google Scholar 

  • Mazei YA, Tikhonenkov DV (2006) Heterotrophic flagellates in the littoral and sublittoral of south-eastern part of the Pechora Sea. Oceanology 46:397–405

    Article  Google Scholar 

  • Mazur P (1984) Freezing of living cell: Mechanisms and implication. Am J Physiol 16:125–142

    Google Scholar 

  • Moon-van der Staay SY, Tzeneva VA, van der Staay GWM, de Vos WM, Smidt H, Hackstein JHP (2006) Eukaryotic diversity in historical soil samples. FEMS Microbiol Ecol 57:420–428

    Article  PubMed  CAS  Google Scholar 

  • Mylnikov AP (2002) New amoeboid flagellates of the genus Cercomonas (Cercomonadida, Protozoa) from lakes of Spitzbergen Islands. Zool Zhurn 81:1187–1192 (in Russian)

    Google Scholar 

  • Mylnikov AP, Zhgarev NA (1984) The flagellates in littoral of Barents Sea and freshwater lakes. Inf Bull Biol Vnutr Vod 63:54–57 (in Russian)

    Google Scholar 

  • Mylnikov AP, Kosolapova NG, Mylnikov AA (2002) Planctonic heterotrophic flagellates of small water bodies in Yaroslavl oblast. Entomol Rev 82:271–280

    Google Scholar 

  • Neff RJ, Neff RH (1969) The biochemistry of amoebic encystment. Symp Soc Exp Biol 23:51–81

    PubMed  CAS  Google Scholar 

  • Odum EP (1986) Ekologiya. Mir, Moscow, 376 pp (in Russian)

    Google Scholar 

  • Page FC (1988) A new key to fresh water and soil gymnamoebae. Fresh Water Biological Association, Cumbria, England

    Google Scholar 

  • Patterson DJ, Nygaard K, Steinberg G, Turley CM (1993) Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the Mid North Atlantic. Mar Biol Assoc UK 73:67–95

    Google Scholar 

  • Petz W (1997) Ecology of the active soil microfauna (Protozoa, Metazoa) of Wilkes Land, East Antarctica. Polar Biol 18:33–44

    Article  Google Scholar 

  • Petz W (2007) Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: Endemism or global distribution of species? FEMS Microbiol Ecol 59:396–408

    Article  PubMed  CAS  Google Scholar 

  • Petz W, Valbonesi A, Quesada A (2005) Ciliate biodiversity in freshwater environments of mari-time and continental Antarctic. Terra Antarct Rep 11:43–50

    Google Scholar 

  • Podlipaeva YI, Shmakova LA, Gilichinski DA, Goodkov AV (2006) Heat shock protein of hsp70 family revealed in some contemporary freshwater amoebids and in acanthamoeba sp. excysted rom cysts isolated from permafrost samples. Tsitologiya 48:691–694 (in Russian)

    CAS  Google Scholar 

  • Poljansky JI (1963) O sposobnosti infuzorii tufel’ki (Paramecium caudatum) perenosit’ tritsatel’nyje temperatury. Acta Protozool 1:165–175

    Google Scholar 

  • Poljansky GI, Sukhanova KM, Karpov SA (2000) General characterization of protists. In: Alimov F (ed) Protista. Nauka, St. Petersburg, pp 145–184

    Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    PubMed  CAS  Google Scholar 

  • Pussard M, Pons R (1977) Morpholofie de la paroi kystique et taxonomie du genre Acanthamoeba Protozoa, Amoebida). Protistologica 13:557–598

    Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytologist 151:341–353

    Article  CAS  Google Scholar 

  • Shatilovich AV, Petrovskaya LE (2007) Ancient soil ciliates isolated from permafrost: Morphological and molecular study. Protistology 5:71

    Google Scholar 

  • Shatilovich AV, Shmakova LA, Gubin SV, Gudkov AV, Gilichinsky DA (2005) Viable protozoa in Lite Ileistocene and Holocene permafrost sediments. Doklady Biol Sci 401:136–138

    Article  CAS  Google Scholar 

  • Shatilovich AV, Shmakova LA, Gubin SV, Gilichinsky DA (2007) Detection of free-living soil rotozoa preserved in Eastern Arctic permafrost. Protistology 5:71

    Google Scholar 

  • Shatilovich AV, Mylnikov AP, Stupin DV (2008) The fauna and morphology of heterotrophic lagellates and heliozoans in Late Pleistocene fossil rodent burrows (Kolyma Lowland). Zoologicheskii Zhurnal, in press

    Google Scholar 

  • Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179

    Article  PubMed  CAS  Google Scholar 

  • Shmakova LA, Podlipaeva YuI, Gilichinsky DA, Gudkov AV (2007) Viable ancient Acanthamoebae from permafrost of Eastern Siberia: Possible reason for high viability potencies. Protistology 5:72

    Google Scholar 

  • Smith HG (1978) The distribution and ecology of terrestrial protozoa of sub-Antarctic and maritime Antarctic islands. Br Antarct Surv Sci Rep 95:1–14

    Google Scholar 

  • Spirina EV, Fedorov-Davydov DG (1998) Microbiological characterization of cryogenic soils in the Kolymskaya Lowland. Euras Soil Sci 31:1331–1344

    Google Scholar 

  • Sukhanova KM (1968) Temperaturnyje adaptatsii u prostejshih. Nauka, Leningrad, pp 267 (in Russian)

    Google Scholar 

  • Tikhonenkov DV, Mazei YA (2007) Heterotrophic flagellates from freshwater biotopes of Matveev and Dolgii Islands (the Pechora Sea). Protistology 4:327–337

    Google Scholar 

  • Tomlinson G, Jones EA (1962) Isolation of cellulose from the cyst wall of a soil amoeba. Biochem Biophys Acta 63:194–200

    Article  PubMed  CAS  Google Scholar 

  • Tong S, Vørs N, Patterson DJ (1997) Heterotrophic Flagellates, centrohelid heliozoan and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol 18:91–106

    Article  Google Scholar 

  • Turner NA, Russell AD, Furr JR, Lloyd D (2000) Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii. J Antimicrobiol Chemother 46:27–34

    Article  CAS  Google Scholar 

  • Ushatinskaja RS (1990) Skrytaja zhizn’ i anabioz. Nauka, Moscow, pp 239 (in Russian)

    Google Scholar 

  • Vørs N (1993) Heterotrophic amoebae, flagellates and heliozoa from Arctic marine waters (North West Territories, Canada and West Greenland). Polar Biol 13:113–126

    Article  Google Scholar 

  • Walker GK, Maugel TK, Goode D (1980) Encystment and excystment in hypotrich ciliates. I. Gastrostyla steinii. Protistologica 16:511–524

    Google Scholar 

  • Zanina OG (2005) Fossil rodent burrows in frozen Late Pleistocene beds of the Kolyma Lowland. Zoologicheskii Zhurnal 6:728–736 (in Russian)

    Google Scholar 

  • Zhukov BF (1993) Atlas of freshwater heterotrophic flagellates (biology, ecology, taxonomy). Rybinsk, pp 160 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassia V. Shatilovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shatilovich, A.V., Shmakova, L.A., Mylnikov, A.P., Gilichinsky, D.A. (2009). Ancient Protozoa Isolated from Permafrost. In: Margesin, R. (eds) Permafrost Soils. Soil Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69371-0_8

Download citation

Publish with us

Policies and ethics