Skip to main content

Global Warming and Thermokarst

  • Chapter

Part of the Soil Biology book series (SOILBIOL,volume 16)

Thermokarst is a geological expression of the ablation of excess ice in permafrost and the subsequent consolidation of the soil or bedrock. Ablation results where disturbances to surface energy exchanges raise ground temperature sufficiently to melt excess ice or where sublimation of ice occurs. Consolidation results from loss of ice or meltwater. Thermokarst processes (subsidence, thermal erosion and surface ablation) are initiated or retarded by a many local or regional changes that are often compound and interactive. Hence thermokarst development may cease before all of the excess ice has melted, or it can be counteracted by permafrost aggradation. Modes of thermokarst activity comprise (1) active-layer deepening, (2) ice-wedge melting, (3) thaw slumping, (4) groundwater flow, (5) shoreline thermokarst and (6) basin thermokarst. Global warming initiated widespread thermokarst during glacial-to-interglacial transitions and, to a smaller degree, during the last 100–150 years. Projected warming during the next century will generally cause thermokarst to intensify and spread.

Keywords

  • Permafrost Degradation
  • Thermokarst Lake
  • Thermal Erosion
  • Mean Annual Ground Temperature
  • Arctic Coastal Plain

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-69371-0_13
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-69371-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACIA (2005) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Are F (1983) Thermal abrasion of coasts. In: Proceedings of the 4th International Conference on Permafrost. National Academy Press, Washington DC, pp 24–27

    Google Scholar 

  • Björck S, Walker MJC, Cwynar L, Johnsen S, Knudsen K-L, Lowe J, Wohlfarth B, INTIMATE Members (1998) An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. J Quat Sci 13:283–292

    CrossRef  Google Scholar 

  • Burn CR (1992) Thermokarst lakes. Can Geogr 36:81–85

    CrossRef  Google Scholar 

  • Burn CR (1997) Cryostratigraphy, paleogeography, and climate change during the early Holocene warm interval, western Arctic coast, Canada. Can J Earth Sci 34:912–935

    CrossRef  Google Scholar 

  • Burn CR (1998) The response (1958–1997) of permafrost and near-surface ground temperatures to forest fire, Takhini River valley, southern Yukon Territory. Can J Earth Sci 35:184–199

    CrossRef  Google Scholar 

  • Burn CR (2000) The thermal regime of a retrogressive thaw slump near Mayo, Yukon Territory. Can J Earth Sci 37:967–981

    CrossRef  Google Scholar 

  • Burn CR, Friele PA (1989) Geomorphology, vegetation succession, soil characteristics and permafrost in retrogressive thaw slumps near Mayo, Yukon Territory. Arctic 42:31–40

    Google Scholar 

  • Burn CR, Lewkowicz AG (1990) Retrogressive thaw slumps. Can Geogr 34:273–276

    CrossRef  Google Scholar 

  • Burn CR, Michel FA, Smith MW (1986) Stratigraphic, isotopic and mineralogical evidence for an early Holocene thaw unconformity at Mayo, Yukon Territory. Can J Earth Sci 23:794–803

    CAS  Google Scholar 

  • Burn CR, Smith MW (1990) Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon Territory. Permafrost Periglac Process 1:161–176

    CrossRef  Google Scholar 

  • Carter LD (1988) Loess and deep thermokarst basins in Arctic Alaska. In: Senneset K (ed) Proceedings of the 5th International Conference on Permafrost, Tapir, Trondheim, pp 706–711

    Google Scholar 

  • Costard F, Dupreyat L, Gautier E, Carey-Gailhardis E (2003) Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (Central Siberia). Earth Surf Process Landforms 28:1349–1359

    CrossRef  Google Scholar 

  • Costard F, Gautier E, Brunstein D, Hammadi J, Fedorov A, Yang D, Dupeyrat L (2007) Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys Res Lett 34: L14501, doi:10.1029/2007GL030212

    CrossRef  Google Scholar 

  • Czudek T, Demek J (1970) Thermokarst in Siberia and its influence on the development of low-land relief. Quat Res 1:103–120

    CrossRef  Google Scholar 

  • Dallimore SR, Wolfe SA, Solomon SM (1996) Influence of ground ice and permafrost on coastal evolution, Richards Island, Beaufort Sea coast, NWT Can J Earth Sci 33:664–675

    Google Scholar 

  • Delisle G (2007) Near-surface permafrost degradation: How severe during the 21st century? Geophys Res Lett 34:L09503, doi:10.1029/2007GL029323

    CrossRef  Google Scholar 

  • Dredge LA, Nixon FM (1979) Thermal sensitivity and the development of tundra ponds and thermokarst lakes in the Manitoba portion of the Hudson Bay Lowland. Geol Survey Canada, Paper 79-1C:23–26

    Google Scholar 

  • Fedorov A, Konstantinov P (2003) Observations of surface dynamics with thermokarst initiation, Yukechi site, central Yakutia. In: Phillips M, Springman SM, Arenson LU (eds) Proceedings of the 8th International Conference on Permafrost, vol 1. Swets & Zeitlinger, Lisse, pp 239–242

    Google Scholar 

  • French HM (1974) Active thermokarst processes, Eastern Banks Island, Western Canadian Arctic. Can J Earth Sci 11:785–794

    Google Scholar 

  • French HM (1975) Man-induced thermokarst, Sachs Harbour airstrip, Banks Island, NWT. Can J Earth Sci 12:132–144

    Google Scholar 

  • Harris C, Murton JB, Davies MCR (2000) Soft-sediment deformation during thawing of icerich frozen soils: results of scaled centrifuge modelling experiments. Sedimentology 47:687–700

    CrossRef  Google Scholar 

  • Harris C, Murton JB, Davies MCR (2005) An analysis of mechanisms of ice-wedge casting based on geotechnical centrifuge modelling. Geomorphology 71:328–343

    CrossRef  Google Scholar 

  • Higgins CG, Coates DR, Péwé TL, Schmidt RAM, Sloan CE (1990) Permafrost and thermokarst; geomorphic effects of subsurface water on landforms of cold regions. In: Higgins CG, Coates DR (eds) Groundwater geomorphology; the role of subsurface water in Earth-surface processes and landforms. Geol Soc Am Special Paper 252, Boulder, Colorado, pp 211–218

    Google Scholar 

  • Hopkins DM, Kidd JG (1988) Thaw lake sediments and sedimentary environments. In: Senneset K (ed) Proceedings of the 5th International Conference on Permafrost, vol 1. Tapir, Trondheim pp 790–795

    Google Scholar 

  • Jorgenson MT, Osterkamp TE (2005) Response of boreal ecosystems to varying modes of permafrost degradation. Can J Forest Res 35:2100–2111, doi: 10.1139/X05-153

    CrossRef  Google Scholar 

  • Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Change 48:551–579

    CrossRef  CAS  Google Scholar 

  • Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophy Res Lett 33:L02503, doi:10.1029/2005GL024960

    CrossRef  Google Scholar 

  • Jorgenson MT, Shur YL, Osterkamp TE, George T (2007) Nature and extent of permafrost degradation in the discontinuous permafrost zone of Alaska. In: Kokelj S, Walters J (eds) Proceedings of the 7th International Conference on Global Change: connection to the Arctic (GCCA-7). International Arctic Research Center, University of Alaska Fairbanks

    Google Scholar 

  • Kääb A, Haeberli W (2001) Evolution of a high mountain thermokarst lake in the Swiss Alps. Arct Antarc Alp Res 33:385–390

    CrossRef  Google Scholar 

  • Kachurin SP (1962) Thermokarst within the territory of the USSR. Biuletyn Peryglacjalny 11:49–55

    Google Scholar 

  • Lawson DE (1982) Long-term modifications of perennially frozen sediment and terrain at East Oumalik, northern Alaska. US Army Corps of Engineers, Cold Regions Res Eng Lab Report 82-36

    Google Scholar 

  • Lawson DE (1986) Response of permafrost terrain to disturbance: a synthesis of observations from northern Alaska, USA. Arct Alp Res 18:1–17

    CrossRef  Google Scholar 

  • Lewkowicz AG (1986) Rate of short-term ablation of exposed ground ice, Banks Island, Northwest Territories, Canada. J Glaciol 32:511–519

    Google Scholar 

  • Lewkowicz AG (1987) Nature and importance of thermokarst processes, Sand Hills Moraine, Banks Island, Canada. Geografiska Annaler 69A:321–327

    CrossRef  Google Scholar 

  • Lewkowicz AG (1988) Ablation of massive ice, Mackenzie Delta. In: Senneset K (ed) Proceedings of the 5th International Conference on Permafrost, vol 1. Tapir, Trondheim, Norway, pp 605–610

    Google Scholar 

  • Mackay JR (1970) Disturbances to the tundra and forest tundra environment of the western Arctic. Can Geotech J 7:420–432

    CrossRef  Google Scholar 

  • Mackay JR (1974) The rapidity of tundra polygon growth and destruction, Tuktoyaktuk Peninsula-Richards Island Area, NWT. Geol Survey Canada Paper 74–1 A:391–392

    Google Scholar 

  • Mackay JR (1988) Catastrophic lake drainage, Tuktoyaktuk Peninsula area, District of Mackenzie. Geol Survey Canada, Paper 88-1D:83–90

    Google Scholar 

  • Mackay JR (1995) Active layer changes (1968 to 1993) following the forest-tundra fire near Inuvik, N.W.T., Canada. Arct Alp Res 27:323–336

    CrossRef  Google Scholar 

  • Mackay JR (1999) Periglacial features developed on the exposed lake bottoms of seven lakes that drained rapidly after 1959, Tuktoyaktuk Peninsula Area, western Arctic coast, Canada. Permafrost Periglac Process 10:39–63

    CrossRef  Google Scholar 

  • Mackay JR (2000) Thermally induced movements in ice-wedge polygons, western arctic coast: a long-term study. Geogr Phys Quat 54:41–68

    Google Scholar 

  • Marchant DR, Lewis AR, Phillips WM, Moore EJ, Souchez RA, Denton GH, Sugden DE, Potter Jr N, Landis GP (2002) Formation of patterned ground and sublimation till over Miocene glacier ice in Beacon Valley, southern Victoria Land, Antarctica. Geol Soc Am Bull 114:718–730

    CrossRef  Google Scholar 

  • McCulloch D, Hopkins D (1966) Evidence for an early recent warm interval in northwestern Alaska. Geol Soc Am Bull 77:1089–1108

    CrossRef  Google Scholar 

  • Murton JB (1996) Thermokarst-lake-basin sediments, Tuktoyaktuk Coastlands, Western Arctic Canada. Sedimentology 43:737–760

    CrossRef  CAS  Google Scholar 

  • Murton JB (2001) Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, Western Arctic Canada. Global Planet Change 28:175–192

    CrossRef  Google Scholar 

  • Murton JB (2006) Ice wedges and ice-wedge casts. In: Elias SA (ed) Encyclopedia of quaternary sciences. Elsevier, Amsterdam, pp 2154–2169

    Google Scholar 

  • Murton JB, French HM (1993) Thermokarst involutions, Summer Island, Pleistocene Mackenzie Delta, Western Canadian Arctic. Permafrost Periglac Process 4:217–229

    CrossRef  Google Scholar 

  • Murton JB, Bateman MD, Baker CA, Knox R, Whiteman CA (2003) The Devensian periglacial record on Thanet, Kent, UK. Permafrost Periglac Process 14:217–246

    CrossRef  Google Scholar 

  • Murton JB, Peterson R, Ozouf J-C (2006) Bedrock fracture by ice segregation in cold regions. Science 314:1127–1129, doi: 10.1126/science.1132127

    PubMed  CrossRef  CAS  Google Scholar 

  • Nelson FE, Anisimov OA, Shiklomanov NI (2001) Subsidence risk from thawing permafrost. Nature 410:889–890

    PubMed  CrossRef  CAS  Google Scholar 

  • Nicholas JRJ, Hinkel KM (1996) Concurrent permafrost aggradation and degradation induced by forest clearing, central Alaska, USA. Arct Alp Res 28:294–299

    CrossRef  Google Scholar 

  • Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. J Geophys Res 112:F02S02, doi:10.1029/2006JF000578

    CrossRef  Google Scholar 

  • Osterkamp TE, Viereck L, Shur Y, Jorgenson MT, Racine C, Doyle A, Boone RD (2000) Observations of therm okarst and its impact on boreal forests in Alaska, USA. Arct Antarc Alp Res 32:303–315

    CrossRef  Google Scholar 

  • Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A, CAPE Last Interglacial Project members (2006) Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311:1751–1753

    PubMed  CrossRef  CAS  Google Scholar 

  • Péwé TL (1954) Effect of permafrost upon cultivated fields. United States Geol Survey Bull 989-F:315–351

    Google Scholar 

  • Péwé TL (1982) Geologic hazards of the Fairbanks area, Alaska. Alaska Division of Geologic and Geophysical Surveys, Special Report 15

    Google Scholar 

  • Péwé TL, Berger GW, Westgate JA, Brown PM, Leavitt SW (1997) Eva Interglaciation Forest Bed, unglaciated central Alaska: global warming 125,000 years ago. Geol Soc Am, Special Paper 319

    Google Scholar 

  • Pullman ER, Jorgenson MT, Shur Y (2007) Thaw settlement in soils of the Arctic coastal plain, Alaska. Arct Antarc Alp Res 39:468–476

    CrossRef  Google Scholar 

  • Rachold V, Grigoriev MN, Are FE, Solomon S, Reimnitz E, Kassens H, Antonow M (2000) Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas. Int J Earth Sci 89:450–460, doi 10.1007/s005310000113

    CrossRef  Google Scholar 

  • Rampton VN (1974) The influence of ground ice and thermokarst upon the geomorphology of the Mackenzie-Beaufort region. In: Fahey BD, Thompson RD (eds) Research in polar and alpine geomorphology. Proceedings of the 3rd Guelph Symposium on Geomorphology. Geo-Abstracts, Norwich, pp 43–59

    Google Scholar 

  • Rampton VN (1988) Quaternary geology of the Tuktoyaktuk Coastlands, Northwest Territories. Geol Survey Canada, Memoir 423

    Google Scholar 

  • Romanovskii NN, Hubberten H-W, Gavrilov AV, Tumskoy VE, Tipenko GS, Grigoriev MN (2000) Thermokarst and land-ocean interactions, Laptev Sea region, Russia. Permafrost Periglac Process 11:137–152

    CrossRef  Google Scholar 

  • Sellmann PV, Brown J, Lewellen RI, McKim H, Merry C (1975) The classification and geomorphic implications of thaw lakes on the Arctic Coastal Plain, Alaska. Cold Regions Res Eng Lab, Research Report 344. Hanover, New Hampshire

    Google Scholar 

  • Seppälä M (1997) Piping causing thermokarst in permafrost, Ungava Peninsula, Quebec, Canada. Geomorphology 20:313–319

    CrossRef  Google Scholar 

  • Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafrost Periglac Process 16:5–17

    CrossRef  Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308:1429

    PubMed  CrossRef  CAS  Google Scholar 

  • Soloviev PA (1973) Thermokarst phenomena and landforms due to frost heaving in central Yakutia. Builetyn Peryglacjalny 23:135–155

    Google Scholar 

  • Tomirdiaro SV (1982) Evolution of lowland landscapes in northeastern Asia during late Quaternary time. In: Hopkins DM, Matthews JV Jr, Schweger CE, Young SB (eds) Paleoecology of Beringia. Academic Press, New York, pp 29–37

    Google Scholar 

  • Vandenberghe J, Van Den Broek P (1982) Weichselian convolution phenomena and processes in fine sediments. Boreas 11:299–315

    CrossRef  Google Scholar 

  • Vandenberghe J, Pissart A (1993) Permafrost changes in Europe during the Last Glacial. Permafrost Periglac Process 4:121–135

    CrossRef  Google Scholar 

  • Walker HJ, Arnborg L, Peippo J (1987) Riverbank erosion in the Colville Delta, Alaska. Geografiska Annaler 69A:61–70

    CrossRef  Google Scholar 

  • Wallace RE (1948) Cave-in lakes in the Nabesna, Chisana, and Tanana River valleys, Eastern Alaska. J Geol 56:171–181

    CrossRef  Google Scholar 

  • Walter KM, Edwards ME, Grosse G, Zimov SA, Chapin III FS (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318:633–636, doi: 10.1126/science.1142924

    PubMed  CrossRef  CAS  Google Scholar 

  • Yi S, Woo M, Arain MA (2007) Impacts of peat and vegetation on permafrost degradation under climate warming, Geophys Res Lett 34:L16504, doi:10.1029/2007GL030550

    CrossRef  Google Scholar 

  • Zimov SA, Schuur EAG, Chapin III FS (2006) Permafrost and the global carbon budget. Science 312:1612–1613. doi: 10.1126/science.1128908

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian B. Murton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murton, J.B. (2009). Global Warming and Thermokarst. In: Margesin, R. (eds) Permafrost Soils. Soil Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69371-0_13

Download citation