Biomechanical Properties of Glutaraldehyde Treated Human Pericadium

  • Valts Ozolins
  • I. Ozolanta
  • L. Smits
  • A. Lacis
  • V. Kasyanov
Conference paper
Part of the IFMBE Proceedings book series (IFMBE, volume 20)


Autologous pericardium, for repair of congenital heart defects, can be used in its fresh non-treated state, or after chemical fixation with glutaraldehyde solution as a biomaterial for surgical repair of congenital heart anomalies. The aim of this experimental study is to investigate changes of biomechanical properties and resistance to proteolytic degradation of human pericardium, after harvesting with glutaraldehyde solution.

After taken out of a pericardium from anterior part of pericardial sac at the time of operation it was fixed with 0.2% solution of glutaraldehyde for 6 minutes.

Some glutaraldehyde treated and untreated samples were incubated in collagenase solution (100 Uml−1) for 2 hours at 37°C and proteolytic effect was estimated with gravimetric method. For investigation of biomechanical properties uniaxial tensile tests were performed with testing machine Zwick-Roell Z010. There were set up 18 pieces of fresh human pericardium and 11 pieces of glutaraldehyde-treated human pericardium.

There is difference (p<0.05) of ultimate strain (ɛmax) between fresh pericardium ɛmax=0.119±0.037 and glutaraldehyde treated human pericardium ɛmax= 0.098±0.015, respectively. There is difference (p<0.05) of ultimate stress (σmax) between non-treated pericardium σmax=3.14±0.70 MPa and glutaraldehyde treated human pericardium σmax=6.20±1.47 MPa. There is difference (p<0.05) of tangential modulus of elasticity (E) between non-treated and glutaraldehyde treated human pericardium: 98.67±20.75 MPa and 50.25±16.04 MPa, respectively. Gravimetric data demonstrated that glutaraldehyde treatment resulted in statistically significant improvement in resistance of human pericardium to proteolytic degradation.

Material became stiffer and stronger after treatment with glutaraldehyde solution as well as more resistant to proteolytic degradation then non-treated one.

These biomechanical differences could be explained by formation of collagen crosslink after glutaraldehyde treatment. We conclude that treating with glutaraldehyde improve the application of autologous human pericardium as the plastic material for surgical repair of congenital heart anomalies by improving its biomechanical properties and increasing resistance to proteolytic degradation.


Autologous pericardium glutaraldehyde biomechanical properties proteolytic degradation congenital heart defect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paez, J. M. G. and E. Jorge-Herrero. (1999) Assessment of Pericardium in Cardiac Bioprostheses: A Review. J Biomater Appl 13:351–388.Google Scholar
  2. 2.
    Humphrey, J. D., R. K. Strumpf, and F. C. Yin. (1990) Biaxial mechanical behavior of excised ventricular epicardium. Am J Physiol Heart Circ Physiol 259:H101–H108.Google Scholar
  3. 3.
    Yang, C., R. Sodian, P. Fu, C. Luders, T. Lemke, J. Du, M. Hubler, Y. Weng, R. Meyer, and R. Hetzer. (2006) In Vitro Fabrication of a Tissue Engineered Human Cardiovascular Patch for Future Use in Cardiovascular Surgery. Ann. Thorac. Surg. 81:57–63.CrossRefGoogle Scholar
  4. 4.
    Rubino, M., A. M. Hamad, F. Rea, and G. Gerosa. (2007) Reconstruction of the right atrium with pulmonary artery homograft after resection of right atrial lipomatosis. Interact CardioVasc Thorac Surgicvts.Google Scholar
  5. 5.
    Ng, C. K., J. Nesser, C. Punzengruber, O. Pachinger, J. Auer, H. Franke, and P. Hartl. (2001) Valvuloplasty with glutaraldehyde — treated autologous pericardium in patients with complex mitral valve pathology. Ann. Thorac. Surg. 71:78–85.CrossRefGoogle Scholar
  6. 6.
    Sharma, C. P. (2001) Blood-Compatible Materials: A Perspective. J Biomater Appl 15:359–381.CrossRefGoogle Scholar
  7. 7.
    Butera G, A. Y. B. D. B. P. (2001) Aneurysmal dilation of a pericardial patch prepared with glutharaldehyde and used for closure of a ventricular septal defect. Italian Heart Journal 2: 317–318.Google Scholar
  8. 8.
    Kawashima, Y., S. Nakano, M. Kato, M. Danno, and K. Sato. (1974) Fate of pericardium utilized for the closure of ventricular septal defect. Postoperative ventricular septal aneurysm. J. Thorac. Cardiovasc. Surg. 68:209–218.Google Scholar
  9. 9.
    Connolly, J. M., I. Alferiev, J. N. Clark-Gruel, N. Eidelman, M. Sacks, E. Palmatory, A. Kronsteiner, S. DeFelice, J. Xu, R. Ohri, N. Narula, N. Vyavahare, and R. J. Levy. (2005) Triglycidylamine Crosslinking of Porcine Aortic Valve Cusps or Bovine Pericardium Results in Improved Biocompatibility, Biomechanics, and Calcification Resistance: Chemical and Biological Mechanisms. Am. J. Pathol. 166:1–13.CrossRefGoogle Scholar
  10. 10.
    Hjelms, E., P. Pohlner, B. G. Barratt-Boyes, and J. B. Gavin. (1981) Study of autologous pericardial patch-grafts in the right ventricular outflow tracts in growing and adult dogs. J Thorac Cardiovasc Surg 81:120–123.Google Scholar
  11. 11.
    Jayakrishnan, A. and S. R. Jameela. (1996) Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials 17:471–484.CrossRefGoogle Scholar
  12. 12.
    Boughner, D. R., M. Haldenby, A. J. Hui, J. Dunmore-Buyze, E. A. Talman, and W. K. Wan. (2000) The pericardial bioprosthesis: altered tissue shear properties following glutaraldehyde fixation. J Heart Valve Dis 9:752–760.Google Scholar
  13. 13.
    Mavrilas, D., E. A. Sinouris, D. H. Vynios, and N. Papageorgakopoulo... (2005) Dynamic mechanical characteristics of intact and structurally modified bovine pericardial tissues. J Biomech 38:761–768.CrossRefGoogle Scholar
  14. 14.
    Stradins, P., R. Lacis, I. Ozolanta, B. Purina, V. Ose, L. Feldmane, and V. Kasyanov. (2004) Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur J Cardiothorac Surg 26:634–639.CrossRefGoogle Scholar
  15. 15.
    Oswal, D., S. Korossis, S. Mirsadraee, H. Wilcox, K. Watterson, J. Fisher, and E. Ingham. (2007) Biomechanical characterization of decellularized and cross-linked bovine pericardium. J Heart Valve Dis 16:165–174.Google Scholar
  16. 16.
    Chanda, J., R. Kuribayashi, and T. Abe. (1997) Concentration of glutaraldehyde in fixation of bioprosthetic values. J. Thorac. Cardiovasc. Surg. 114:512.CrossRefGoogle Scholar
  17. 17.
    Duncan, A. C., D. Boughner, and I. Vesely. (1997) Viscoelasticity of Dynamically Fixed Bioprosthetic Valves. II. Effect of Glutaraldehyde Concentration. J Thorac Cardiovasc Surg 113:302–310.CrossRefGoogle Scholar
  18. 18.
    Stacchino, C., G. Bona, F. Bonetti, S. Rinaldi, L. Della Ciana, and A. Grignani. (1998) Detoxification process for glutaraldehyde-treated bovine pericardium: biological, chemical and mechanical characterization. J Heart Valve Dis 7:190–194.Google Scholar
  19. 19.
    Vincentelli, A., R. Zegdi, A. Prat, P. Lajos, C. Latremouille, E. Le-Bret, G. De Boisbaudry, A. Carpentier, and J. N. Fabiani. (1998) Mechanical modifications to human pericardium after a brief immersion in 0.625% glutaraldehyde. J Heart Valve Dis 7:24–29.Google Scholar
  20. 20.
    Srivatsa, S. S., P. J. Harrity, P. B. Maercklein, L. Kleppe, J. Veinot, W. D. Edwards, C. M. Johnson, and L. A. Fitzpatrick. (1997) Increased Cellular Expression of Matrix Proteins That Regulate Mineralization Is Associated with Calcification of Native Human and Porcine Xenograft Bioprosthetic Heart Valves. J. Clin. Invest. 99:996–1009.CrossRefGoogle Scholar
  21. 21.
    Gross, J. M. (2003) Calcification of bioprosthetic heart valves and its assessment. J. Thorac. Cardiovasc. Surg. 125:6S–8.CrossRefGoogle Scholar
  22. 22.
    Cheung, D. T., S. J. Choo, A. C. Grobe, D. C. Marchion, H. H. Luo, D. C. Pang, B. E. Favara, J. H. Oury, and C. M. G. Duran. (1999) Behaviour of Vital and Killed Autologous Pericardium in the Descending Aorta of Sheep. J. Thorac. Cardiovasc. Surg. 118:998–1005.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Valts Ozolins
    • 1
  • I. Ozolanta
    • 1
  • L. Smits
    • 1
  • A. Lacis
    • 1
  • V. Kasyanov
    • 1
  1. 1.Riga Stradins UniversityRigaLatvia

Personalised recommendations