Advertisement

Vitiligo pp 269-282 | Cite as

Cytokines and Growth Factors

  • Genji Imokawa
  • Silvia MorettiEmail author
  • G Imokawa
  • S Moretti
  • M Picardo
  • A Taïeb
  • Moretti Silvia
  • G Imokawa

Core Messages

  • An imbalance of keratinocyte-derived cytok-ines and dysregulations of cytokine/receptor interactions both capable of affecting melano-cyte activity and survival has been demonstrated in vitiligo epidermis.

  • Melanogenic growth factors such as stem-cell factor (SCF) and endothelin (ET)-1, as well as inflammatory cytokines with anti-melanogenic properties, such as IL-1, IL-6, and tumor necrosis factor (TNF)-α, are implicated.

  • The over-expression of TNF-α may facilitate the apoptosis of keratinocytes, leading to a decrease in the production of ET-1 and SCF, thus enhancing melanocyte disappearance.

  • At the junction of lesional vitiligo epidermis, melanocytes remain and express tyrosinase, S100α and ET-B receptor (ETBR), but not c-kit or MITF-M.

  • At the center of lesional vitiligo epidermis, there is a complete loss of melanocytes expressing c-kit, S100α, ETBR, and/or tyrosinase.

  • This deterioration in the expression of c-kit by melanocytes and its downstream effectors, including MITF-M, may be associated with the dysfunction and/or loss of melanocytes in vitiligo epidermis.

  • The cytokine imbalance in vitiligo epidermis may be also related to an impaired keratinocyte senescence process.

Keywords

Hepatocyte Growth Factor Stem Cell Factor Human Melanocyte Vitiligo Patient Stem Cell Factor Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. 1.
    Cardinali G, Ceccarelli S, Kovacs D et al (2005) Keratinocyte growth factor promotes melanosome transfer to keratino-cytes. J Invest Dermatol 125:1190–1199PubMedCrossRefGoogle Scholar
  2. 2.
    Cardinali G, Bolasco G, Aspite N et al (2008) Melanosome transfer promoted by keratinocyte growth factor in light and dark skin-derived keratinocytes. J Invest Dermatol 128:558–567PubMedGoogle Scholar
  3. 3.
    Cario-André M, Pain C, Gauthier Y et al (2006) In vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation. Pigment Cell Res 19:434–442CrossRefGoogle Scholar
  4. 4.
    Ezoe K, Holmes SA, Ho L et al (1995) Novel mutations and deletions of the KIT (steel factor receptor) gene in human piebaldism. Am J Hum Genet 56:58–66PubMedGoogle Scholar
  5. 5.
    Fitzpatrick TB, Breatnach AS (1963) The epidermal melanin unit system. Dermatol Wochenschr 147:481–489PubMedGoogle Scholar
  6. 6.
    Fitzpatrick TB, Szabo G, Seji M et al (1979) Biology of melanin pigmentary system. In: Fitzpatrick TB, Eisen A, WolffK, Freedberg I, Austen K (eds) Dermatology in general Medicine. McGraw-Hill, New YorkGoogle Scholar
  7. 7.
    Funasaka Y, Boulton T, Cobb M et al (1992) Kit-kinase induces a cascade of protein tyrosine phosphorylation in normal human melanocytes in response to mast cell growth factor and stimulates mitogen-activated protein kinase but is down-regulated in melanomas. Mol Biol Cell 3:197–209PubMedGoogle Scholar
  8. 8.
    Giebel LB, Spritz RA (1991) Mutation of the KIT (mast/ stem-cell growth factor receptor) protooncogene in human piebaldism. Proc Natl Acad Sci USA 88:8696–8699PubMedCrossRefGoogle Scholar
  9. 9.
    Gordon PR, Mansur CP, Gilchrest BA (1989) Regulation of human melanocyte growth, dendricity, and melaniza-tion by keratinocytes derived factors. J Invest Dermatol 92:565–572PubMedCrossRefGoogle Scholar
  10. 10.
    Hattori H, Kawashima M, Ichikawa Y et al (2004) The epidermal stem cell factor is over-expressed in lentigo senilis: implication for the mechanism of hyperpigmentation. J Invest Dermatol 122:1256–1265PubMedCrossRefGoogle Scholar
  11. 11.
    Imokawa G, Kobayashi T, Miyagishi M et al (1997) The role of endothelin-1 in epidermal hyperpigmentation and signalling mechanisms of mitogenesis and melanogenesis. Pigment Cell Res 10:218–228PubMedCrossRefGoogle Scholar
  12. 12.
    Moretti S, Massi D, Baroni G et al (2005) Imbalance of cytokine transcripts in non segmental vitiligo. Pigment Cell Res 18(suppl 1):72Google Scholar
  13. 13.
    Norris A, Todd C, Graham A et al (1996) The expression of the c-kit receptor by epidermal melanocytes may be reduced in vitiligo. Br J Dermatol 134:299–306PubMedCrossRefGoogle Scholar
  14. 14.
    Sakamoto A, Yanagisawa M, Sakurai T et al (1991) Cloning and functional expression of human cDNA for the ETB endothe-lin receptor. Biochem Biophys Res Commun 178:656–663PubMedCrossRefGoogle Scholar
  15. 15.
    Valyi-Nagy IT, Murphy GF, Mancianti ML et al (1990) Phenotypes and interactions of human melanocytes and kera-tinocytes in an epidermal reconstruction model. Lab Invest 62:314–324PubMedGoogle Scholar
  16. 1.
    Birol A, Kisa U, Kara F et al (2006) Increased tumor necrosis factor alpha (TNF-α) and interleukin 1 alpha (IL-1α) levels in the lesional skin of patients with nonsegmental viti-ligo. Int J Dermatol 45:992–993PubMedCrossRefGoogle Scholar
  17. 2.
    Bondanza S, Maurelli R, Paterna P et al (2007) Keratinocyte cultures from involved skin in vitiligo patients show an impaired in vitro behaviour. Pigment Cell Res 20:288–300PubMedCrossRefGoogle Scholar
  18. 3.
    Dell'Anna ML, Picardo M (2006) A review and a new hypothesis for non immunological pathogenetic mechanism in viti-ligo. Pigment Cell Res 19:406–411CrossRefGoogle Scholar
  19. 4.
    Grimes PE, Morris R, Avaniss-Aghajani E et al (2004) Topical tacrolimus therapy for vitiligo: therapeutical responses and skin messenger RNA expression of proinflammatory cytok-ines. J Am Acad Dermatol 51:52–61PubMedCrossRefGoogle Scholar
  20. 5.
    Haycock JW, Rowe SJ, Cartledge S et al (2000) a-Melanocyte stimulating hormone reduces impact of proinflammatory cytokine and peroxide-generated oxidative stress on keratino-cytes and melanoma cell lines. J Biol Chem 275:15629–15636PubMedCrossRefGoogle Scholar
  21. 6.
    Hsu H, Shu HB, Pan MG et al (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308PubMedCrossRefGoogle Scholar
  22. 7.
    Kim NH, Jeon S, Lee HJ, Lee AY (2007) Impaired PI3K/Akt activation-mediated NF-kB inactivation under elevated TNF-a is more vulnerable to apoptosis in vitiliginous kera-tinocytes. J Invest Dermatol 127:2612–2617PubMedCrossRefGoogle Scholar
  23. 8.
    Kitamura R, Tsukamoto K, Harada K et al (2004) Mechanisms underlying the dysfunction of melanocytes in vitiligo epidermis: role of SCF/KIT protein interactions and its downstream effector, MITF-M. J Pathol 202:463–475PubMedCrossRefGoogle Scholar
  24. 9.
    Lan CCE, Chen GS, Chiou MH et al (2005) FK506 promotes melanocyte and melanoblst growth and creates a favourable milieu for cell migration via keratinocytes: possible mechanisms of how tacrolimus ointment induces repigmentation in patients with vitiligo. Br J Dermatol 153:498–505PubMedCrossRefGoogle Scholar
  25. 10.
    Lee AY, Youm YH, Kim NH et al (2004) Keratinocytes in the depigmented epidermis of vitiligo are more vulnerable to trauma (suction) the keratinocytes in the normally pig-mented epidermis, resulting in their apoptosis. Br J Dermatol 151:995–1003PubMedCrossRefGoogle Scholar
  26. 11.
    Lee AY, Kim NH, Choi WI et al (2005) Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blisterd epidermis may cause passive melanocyte death in vitiligo. J Invest Dermatol 124:976–983PubMedCrossRefGoogle Scholar
  27. 12.
    Martinez-Esparza M, Jimenez-Cervantes C, Solano F et al (1998) Mechanisms of melanogenesis inhibition by tumor necrosis factor-a in B16/F10 mouse melanoma cells. Eur J Biochem 255:139–146PubMedCrossRefGoogle Scholar
  28. 13.
    May MJ, Ghosh S (1998) Signal transduction through NF-kappa B. Immunol Today 19:80–88PubMedCrossRefGoogle Scholar
  29. 14.
    Morelli JG, Norris DA (1993) Influence of inflammatory mediators and cytokines on human melanocytes function. J Invest Dermatol 100(suppl):191S–195SPubMedGoogle Scholar
  30. 15.
    Moretti S, Spallanzani A, Amato L et al (2002) Vitiligo and epidermal microenvironment: possibile involvement of kera-tinocyte-derived cytokines. Arch Dermatol 138:273–274PubMedCrossRefGoogle Scholar
  31. 16.
    Moretti S, Spallanzani A, Amato L et al (2002) New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res 15:87–92PubMedCrossRefGoogle Scholar
  32. 17.
    Moretti S, Massi D, Baroni G et al (2005) Imbalance of cytokine transcripts in non segmental vitiligo. Pigment Cell Res 18(suppl 1):72Google Scholar
  33. 18.
    Okazaki M, Yoshimura K, Uchida G et al (2005) Correlation between age and the secretions of melanocyte-stimulating cytokines in cultures keratinocytes and fibroblasts. Brit J Dermatol 153(suppl 2):23–29CrossRefGoogle Scholar
  34. 19.
    Swope VB, Abdel-Malek Z, Kassem LM et al (1991) Interleukin 1α and 6 and tumor necrosis factor -α are para-crine inhibitors of human melanocyte proliferation and mel-anogenesis. J Invest Dermatol 96:180–185PubMedCrossRefGoogle Scholar
  35. 1.
    Amae S, Fuse N, Yasumoto K et al (1998) Identification of a novel isoform of microphthalmia-associated transcription factor that is enriched in retinal pigment epithelium. Biochem Biophys Res Commun 247:710–715PubMedCrossRefGoogle Scholar
  36. 2.
    Fuse N, Yasumoto K, Suzuki H et al (1996) Identification of a melanocyte-type promoter of the microphthalmia-associated transcription factor gene. Biochem Biophys Res Commun 219:702–707PubMedCrossRefGoogle Scholar
  37. 3.
    Fuse N, Yasumoto K, Takeda K et al (1999) Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus. J Biochem 126:1043–1051PubMedCrossRefGoogle Scholar
  38. 4.
    Gauthier Y, Cario-André M, Taieb A (2003) A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy?. Pigment Cell Res 16:322–332PubMedCrossRefGoogle Scholar
  39. 5.
    Hachiya A, Kobayashi A, Ohuchi A et al (2001) The para-crine role of stem cell factor/c-kit signaling in the activation of human melanocytes in ultraviolet B-induced pigmentation. J Invest Dermatol 116:578–586PubMedCrossRefGoogle Scholar
  40. 6.
    Hemesath TJ, Price ER, Takemoto C et al (1998) MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature 391:298–301PubMedCrossRefGoogle Scholar
  41. 7.
    Hou L, Panthier JJ, Arnheiter H (2000) Signaling and tran-scriptional regulation in the neural crest-derived melanocyte lineage: interactions between KIT and MITF. Development. 127:5379–5389PubMedGoogle Scholar
  42. 8.
    Jimenez-Cervantes C, Martinez-Esparza M, Perez C et al (2001) Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor. J Cell Sci 114:2335–2344PubMedGoogle Scholar
  43. 9.
    Jin SK, Nishimura KE, Akasaka E et al (2009) Epistatic connections between MITF and endothelin signaling in Waardenburg syndrome and other pigmentary disorders. FASEB JGoogle Scholar
  44. 10.
    Kitamura R, Tsukamoto K, Harada K et al (2004) Mechanisms underlying the dysfunction of melanocytes in vitiligo epidermis: role of SCF/KIT protein interactions and its downstream effector, MITF-M. J Pathol 202:463–475PubMedCrossRefGoogle Scholar
  45. 11.
    Maresca V, Roccella M, Roccella F et al (1997) Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 109:310–313PubMedCrossRefGoogle Scholar
  46. 12.
    McGill GG, Horstmann M, Widlund HR et al (2002) Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109:707–718PubMedCrossRefGoogle Scholar
  47. 13.
    Mochii M, Mazaki Y, Mizuno N et al (1998) Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Dev Biol 193:47–62PubMedCrossRefGoogle Scholar
  48. 14.
    Oboki K, Morii E, Kataoka TR et al (2002) Isoforms of mi transcription factor preferentially expressed in cultured mast cells of mice. Biochem Biophys Res Commun 290:1250–1254PubMedCrossRefGoogle Scholar
  49. 15.
    Sakamoto A, Yanagisawa M, Sakurai T et al (1991) Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Biophys Res Commun 178:656–663PubMedCrossRefGoogle Scholar
  50. 16.
    Schallreuter KU, Wood JM, Berger J (1991) Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 97:1081–1085PubMedCrossRefGoogle Scholar
  51. 17.
    Takeda K, Yasumoto K, Kawaguchi N et al (2002) Mitf-D, a newly identified isoform, expressed in the retinal pigment epithelium and monocyte-lineage cells affected by Mitf mutations. Biochim Biophys Acta 1574:15–23PubMedCrossRefGoogle Scholar
  52. 18.
    Udono T, Yasumoto K, Takeda K et al (2000) Structural organization of the human microphthalmia-associated transcription factor gene containing four alternative promoters. Biochim Biophys Acta 1491:205–219PubMedCrossRefGoogle Scholar
  53. 19.
    Wu M, Hemesath TJ, Takemoto CM et al (2000) c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev 14:301–312PubMedGoogle Scholar
  54. 20.
    Xu W, Gong L, Haddad MM et al (2000) Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin conjugating enzyme hUBC9. Exp Cell Res 255:135–143PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Genji Imokawa
    • 1
  • Silvia Moretti
    • 2
    Email author
  • G Imokawa
  • S Moretti
  • M Picardo
  • A Taïeb
  • Moretti Silvia
  • G Imokawa
  1. 1.School of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
  2. 2.Department of Dermatological SciencesUniversity of FlorenceFlorenceItaly

Personalised recommendations