Advertisement

Vitiligo pp 231-237 | Cite as

Oxidative Stress

  • Mauro PicardoEmail author
  • Maria Lucia Dell'Anna

Core Messages

  • The studies of the metabolic deregulations leading to toxic damage of the melanocytes appear to be relevant.

  • An oxidative stress process is associated with melanocyte degeneration.

  • In vitiligo patients, systemic oxidative stress can be detected, suggesting the involvement of metabolisms not exclusively related to the melanogenic process.

Keywords

Melanin Synthesis Cumene Hydroperoxide Systemic Oxidative Stress Toxic Intermediate Vitiligo Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Reference

  1. 1.
    Agrawal D, Shajil EM, Marfatia YS et al (2004) Study of the antioxidant status of vitiligo patients of different age groups in Baroda. Pigment Cell Res 17:289–294PubMedCrossRefGoogle Scholar
  2. 2.
    Boissy RE, Liu YY, Medrano EE et al (1991) Structural aberration of the rough endoplasmic reticulum and melano-some compartmentalization in long-term cultures of melano-cytes from vitiligo patients. J Invest Dermatol 97:395–404PubMedCrossRefGoogle Scholar
  3. 3.
    Boissy RE, Manga P (2004) On the etiology of contact/ occupational vitiligo. Pigment Cell Res 17:208–214PubMedCrossRefGoogle Scholar
  4. 4.
    Casp CB, She JX, McCormack WT (2001) Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res 15:62–66CrossRefGoogle Scholar
  5. 5.
    Chavan B, Gillbro JM, Rokos H et al (2006) GTP cyclohy-drolase feedback regulatory protein controls cofactor 6-tetrahydrobiopterin synthesis in the cytosol and in the nucleus of epidermal keratinocytes and melanocytes. J Invest Dermatol 126:2481–2489PubMedCrossRefGoogle Scholar
  6. 6.
    Cucchi ML, Frattini P, Santagostino G et al (2000) Higher plasma catecholamine and metabolite levels in the early phase of nonsegmental vitiligo. Pigment Cell Res 13:28–32PubMedCrossRefGoogle Scholar
  7. 7.
    Dell'Anna ML, Maresca V, Briganti S et al (2001) Mitochondrial impairment in peripheral blood mononuclear cells during the active phase of vitiligo. J Invest Dermatol 117:908–913PubMedCrossRefGoogle Scholar
  8. 8.
    Dell'Anna ML, Urbanelli S, Mastrofrancesco A et al (2003) Alterations of mitochondria in peripheral blood mononul-cear cells of vitiligo patients. Pigment Cell Res 16:553–559PubMedCrossRefGoogle Scholar
  9. 9.
    Dell'Anna ML, Camera E, Picardo M (2005) Free radicals. In: Bos JD (ed) Skin immune system, 3rd edn. CRC press, Boca Raton, pp 287–313Google Scholar
  10. 10.
    Dell'Anna ML, Ottaviani M, Albanesi V et al (2007) Membrane lipid alternations as a possible basis for melanocyte degeneration in vitiligo. J Invest Dermatol 127:1226–1233PubMedCrossRefGoogle Scholar
  11. 11.
    Dell Anna HL, Picardo M (2006). A review and a new hypothesis for non-immunological pathogenetic mechanisms in viti-ligo. Pigment Cell Res 19:406–411CrossRefGoogle Scholar
  12. 12.
    Gillbro JM, Marles LK, Hibberts NA et al (2004) Autocrine catecholamine biosynthesis and the b2-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J Invest Dermatol 123:346–353PubMedCrossRefGoogle Scholar
  13. 13.
    Giovannelli L, Bellandi S, Pitozzi V et al (2004) Increased oxidative DNA damage in mononuclear leukocytes in vitiligo. Mut Res 556:101–106CrossRefGoogle Scholar
  14. 14.
    Hann SK (1999) A role of the nervous system in the patho-genesis of segmental vitiligo. Pigment Cell Res 7:26Google Scholar
  15. 15.
    Hasse S, Gibbons NCJ, Rokos H et al (2004) Perturbed 6-tetrahydrobiopterin recycling via decreased dihydropteri-dine reductase in vitiligo: more evidence for H2O2 stress. J Invest Dermatol 122:307–313PubMedCrossRefGoogle Scholar
  16. 16.
    Jimbow K, Chen H, Park JS et al (2001) Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br J Dermatol 144:55–65PubMedCrossRefGoogle Scholar
  17. 17.
    Jimenez-Cervantes C, Martinez-Esparza M, Perez C et al (2001) Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphtalmia transcription factor. J Cell Sci 114:2335–2344PubMedGoogle Scholar
  18. 18.
    Koca R, Armutcu F, Altinyazar HC et al (2004) Oxidant-antioxidant enzymes and lipid peroxidation in generalized vitiligo. Exp Dermatol 29:406–409CrossRefGoogle Scholar
  19. 19.
    Kroll TM, Bommiasamy H, Boissy RE et al (2005) 4-tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 124:798–806PubMedCrossRefGoogle Scholar
  20. 20.
    Lee AY, Youm YH, Kim NH et al (2004) Keratinocytes in the depigmented epidermis of vitiligo are more vulnerable to trauma (suction) than keratinocytes in the normally pig-mented epidermis, resulting in their apoptosis. Br J Dermatol 151:995–1003PubMedCrossRefGoogle Scholar
  21. 21.
    Lee YA, Kim NH, Choi WI et al (2005) Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. J Invest Dermatol 124:976–983PubMedCrossRefGoogle Scholar
  22. 22.
    Le Poole IC, Das PK, van den Wijngaard RM et al (1993) Review of the etiopathomechanism of vitiligo: a convergence theory. Exp Dermatol 2:145–153PubMedCrossRefGoogle Scholar
  23. 23.
    Le Poole IC, Das PK (1997) Microscopic changes in vitiligo. Clin Dermatol 15:863–873PubMedCrossRefGoogle Scholar
  24. 24.
    Le Poole IC, van den Wijingaard RMJGJ, Westerhof W et al (1997) Tenascin is overexpressed in vitiligo lesional skin and inhibits melanocyte adhesion. Br J Dermatol 137:171–178PubMedCrossRefGoogle Scholar
  25. 25.
    Le Poole IC, Sarangarajan R, Zhao Y et al (2001) “VIT1”, a novel gene associated with vitiligo. Pigment Cell Res 14:475–484PubMedCrossRefGoogle Scholar
  26. 26.
    Le Poole IC, Wankowicz-Kalinska A, van den Wijngaard RM et al (2004) Autoimmune aspects of depigmentation in vitiligo. J Invest Dermatol Symp Proc 9:68–72CrossRefGoogle Scholar
  27. 27.
    Maresca V, Roccella M, Roccella F et al (1997) Increased sensitivity to peroxidative agents as possible pathogenic factor of melanocyte damage in vitiligo. J Invest Dermatol 109:310–313PubMedCrossRefGoogle Scholar
  28. 28.
    Medrano EE, Nordlund JJ (1990) Successful culture of adult human melanocytes obtained from normal and vitiligo donors. J Invest Dermatol 95:441–445PubMedGoogle Scholar
  29. 29.
    Montes LF, Abulafia J, Wilborn WH et al (2003) Value of histopathology in vitiligo. Int J Dermatol 42:57–61PubMedCrossRefGoogle Scholar
  30. 30.
    Moretti S, Spallanzani A, Amato L et al (2002) New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions. Pigment Cell Res 15:87–92PubMedCrossRefGoogle Scholar
  31. 31.
    Moretti S, Spallanzani A, Amato L et al (2002) Vitiligo and epidermal microenvironment: possible involvement of kera-tinocytes-derived cytokines. Arch Dermatol 138:273–274PubMedCrossRefGoogle Scholar
  32. 32.
    Morrone A, Picardo M, De Luca C et al (1992) Catecholamines and vitiligo. Pigment Cell Res 5:65–69PubMedCrossRefGoogle Scholar
  33. 33.
    Panucio AL, Vignale R (2003) Ultrastructure studies in stable vitiligo. Am J Dermopathol 25:16–20CrossRefGoogle Scholar
  34. 34.
    Picardo M (2009). Lipid-mediated signalling and melano-cyte function. Pigment Cell Mel Res 22:152–153CrossRefGoogle Scholar
  35. 35.
    Puri N, Mojamdar M, Ramaiah A (1987) In vitro growth characteristics of melanocytes obtained from adult normal and vitiligo subjects. J Invest Dermatol 88:434–438PubMedCrossRefGoogle Scholar
  36. 36.
    Rokos H, Beazley WD, Schallreuter KU (2002) Oxidative stress in vitiligo: photo-oxidation of pterins produces H2O2 and pterin-6-carboxylic acid. Biochem Biophys Res Commun 292:805–811PubMedCrossRefGoogle Scholar
  37. 37.
    Schallreuter KU, Wood JM, Pittelkow MR et al (1996) Increased monoamine oxidase A activity in the epider- mis of patients with vitiligo. Arch Dermatol Res 288:14–18PubMedCrossRefGoogle Scholar
  38. 38.
    Schallreuter KU, Moore J, Wood JM et al (1999) In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Invest Dermatol Symp Proc 4:91–96CrossRefGoogle Scholar
  39. 39.
    Schallreuter KU, Moore J, Wood JM et al (2001) Epidermal H2O2 accumulation alters tetrahydrobiopterin (6BH4) recycling in vitiligo: identification of a general mechanism in regulation of all 6BH4-dependent processes? J Invest Dermatol 116:167–174PubMedCrossRefGoogle Scholar
  40. 40.
    Schallreuter KU, Wood JM, Berger J (2001) Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 97:1081–1085CrossRefGoogle Scholar
  41. 41.
    Schallreuter KU, Baharodan P, Picardo M et al (2008) Vitiligo pathgenesis autoimmune disease, generic defect, excessive reactive oxygen species, calcium imbalnac, or what else? Exp Dermatol 17:139–160PubMedGoogle Scholar
  42. 42.
    Schallreuter KU, Chinchiarelli G, Cemeli E et al (2006). Estrogens can contribute to hydrogen peroxide generation and quinone-mediated DNA damage in peripheral blood lymphocytes from patients with vitiligo. J Invest Dermatol 126:1036–1042PubMedCrossRefGoogle Scholar
  43. 43.
    Stromberg S, Bjorklund MG, Asplund A et al (2008) Transcriptional profiling of melanocytes from patients with vitiligo vulgaris. Pigment Cell Mel Res 21:162–171CrossRefGoogle Scholar
  44. 44.
    Taieb A (2000) Intrinsic and extrinsic pathomechanisms in vitiligo. Pigment Cell Res 13:41–47PubMedCrossRefGoogle Scholar
  45. 45.
    Tursen U, Kaya TI, Derici MEEE et al (2002) Association between catechol-O-methyltransferase polymorphism and vitiligo. Arch Dermatol Res 294:143–146PubMedCrossRefGoogle Scholar
  46. 46.
    Yang F, Boissy RE (1999) Effects of 4-tertiary butylphenol on the tyrosinase activity in human melanocytes. Pigment Cell Res 12:237–245PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Istituto Dermatologico San GallicanoRomaItaly

Personalised recommendations