Application of Disposable Bag Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents

  • R. Eibl
  • D. Eibl
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 112)

In order to increase process efficiency, many pharmaceutical and biotechnology companies have introduced disposable bag technology over the last 10 years. Because this technology also greatly reduces the risk of cross-contamination, disposable bags are preferred in applications in which an absolute or improved process safety is a necessity, namely the production of functional tissue for implantation (tissue engineering), the production of human cells for the treatment of cancer and immune system diseases (cellular therapy), the production of viruses for gene therapies, the production of therapeutic proteins, and veterinary as well as human vaccines.

Bioreactors with a pre-sterile cultivation bag made of plastic material are currently used in both development and manufacturing processes primarily operating with animal and human cells at small- and middle-volume scale. Because of their scalability, hydrodynamic expertise and the convincing results of oxygen transport efficiency studies, wave-mixed bioreactors are the most used, together with stirred bag bioreactors and static bags, which have the longest tradition.

Starting with a general overview of disposable bag bioreactors and their main applications, this chapter summarizes the working principles and engineering aspects of bag bioreactors suitable for cell expansion, formation of functional tissue and production of therapeutic agents. Furthermore, results from selected cultivation studies are presented and discussed.


Keywords Cell expansion Disposable bag bioreactor Functional tissue Stem cells Therapeutic agents 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DePalma A (2006) GEN 26:60Google Scholar
  2. 2.
    Morrow KJ (2007) GEN 28:37Google Scholar
  3. 3.
    Flanagan N (2007) GEN 27:38Google Scholar
  4. 4.
    Eibl R, Eibl D (2006) Disposable bioreactors for pharmaceutical research and manufacturing. Proceedings 2nd international conference on bioreactor technology in cell, tissue culture and biomedical applications. Saariselkä, FinlandGoogle Scholar
  5. 5.
    Eibl R, Eibl D (2007) PROCESS PharmaTEC 4:14Google Scholar
  6. 6.
    Stang BV, Wood PA, Reddington JJ, Reddington GM, Heidel JR (1997) Monoclonal antibody production in gas-permeable bags using serum-free media. Monoclonal antibody workshop. Baltimore, CaliforniaGoogle Scholar
  7. 7.
    Daley LP, Gagliardo LF, Duffy MS, Smith MC, Appleton JA (2005) Clin Diagn Lab Immunol 12:380CrossRefGoogle Scholar
  8. 8.
    Purdue, GF, Hunt JL, Still JM, Law EJ, Herndon DN, Goldfarb IW, Schiller WR, Hansbrough JF, Hickerson WL, Himel HN, Kealey GP, Twomey J, Missavage AE, Solem LD, Davis M, Totoritis M, Gentzkow GD (1997) J Burn Care Rehab 18:52CrossRefGoogle Scholar
  9. 9.
    Halberstadt, CR, Hardin R, Bezverkov K, Snyder D, Allen L, Landeen L (1994) Biotechnol Bioeng 43:740CrossRefGoogle Scholar
  10. 10.
    Card, C, Smith T (2006) Application report draft — SUB050601Google Scholar
  11. 11.
    Thermo Fisher Scientific (2007) Application note: AN003 Rev 1Google Scholar
  12. 12.
    Galliher P (2007) Case study: scale up to a 1,000 L perfusion in a disposable stirred tank bioreactor. BioProduction. Berlin, GermanyGoogle Scholar
  13. 13.
    Castillo J, Vanhamel S (2007) GEN 27:40Google Scholar
  14. 14.
    Zambaux JP (2007) How synergy answers the biotech industry needs. BioProduction 2007. Berlin, GermanyGoogle Scholar
  15. 15.
    Kunas KT, Keating J (2005) Stirred tank-single-use bioreactor: comparison to traditional stirred tank bioreactor. bioLOGIC Europe, Geneva, SwitzerlandGoogle Scholar
  16. 16.
    Card C (2007) Large scale, animal free production of human monoclonal antibody using PERC.6 ™ cells in a disposable, stirred-tank bioreactor. 20th ESACT meeting 2007, Dresden, Germany (poster)Google Scholar
  17. 17.
    Zijlstra, G (2007) Scale-up of a PER.C6 ® fed-batch process in 50 and 250 L Hyclone single use bioreactors compared to 50 and 250 L stainless steel bioreactors. 20th ESACT meeting 2007, Dresden, Germany (poster)Google Scholar
  18. 18.
    Brecht R (2007) Disposable bioreactor technologies: challenges and trends in cGMP manufacturing. BioProduction 2007. Berlin, GermanyGoogle Scholar
  19. 19.
    Ozturk SS (2007) Comparison of product quality: disposable and stainless steel bioreactor. BioProduction 2007. Berlin, GermanyGoogle Scholar
  20. 20.
    Zurich University of Applied Sciences, Department for Life Sciences and Facility Management, IBT, Cell cultivation techniques and biochemical engineering (2006–2007) Protocols of experiments, unpublishedGoogle Scholar
  21. 21.
    Werner S, Nägeli M (2007) BioTechnology 3:22Google Scholar
  22. 22.
    Amanullah A, Burden E, Jug-Dujakovic M, Mikola M, Pearre C, Herber W (2004) Development of a large-scale cell bank in cryobags for the production of biologics. http:// Cited November 4, 2007
  23. 23.
    Cronin CN, Lim KB, Rogers J (2007) Protein Sci 16:2023CrossRefGoogle Scholar
  24. 24.
    Fries, S, Glazomitsky K, Woods A, Forrest G, Hsu A, Olewinski R, Robinson D, Chartrain M (2005) BioProcess Int 3:36Google Scholar
  25. 25.
    Genzel Y, Behrendt I, Koenig S, Sann H, Reichl U (2004) Vaccine 22:2202CrossRefGoogle Scholar
  26. 26.
    Genzel Y, Olmer RM, Schaefer B, Reichl U (2006) Vaccine 24:6074CrossRefGoogle Scholar
  27. 27.
    Hundt B, Best C, Schlawin N, Kassner H, Genzel Y, Reichl U (2007) Vaccine 25:3987CrossRefGoogle Scholar
  28. 28.
    Knevelman C, Hearle DC, Osman JJ, Khan M, Dean M, Smith M, Aiyedebinu Cheung K (2002) Characterization and operation of a disposable bioreactor as a replacement for conventional steam-in-place inoculum bioreactors for mammalian cell culture processes. 224th National Meeting of the American Chemical Society, Boston, MA; American Chemical Society, Washington DC; BIOT 210 (poster)Google Scholar
  29. 29.
    Matthews T, Wolk B (2005) The use of disposable technologies in antibody manufacturing processes. Cited November 4, 2007
  30. 30.
    Negrete A, Kotin RM (2007) J Virol 145:155Google Scholar
  31. 31.
    Ohashi R, Singh V, Hammel JF (2001) Perfusion cell culture in disposable bioreactors. 17th ESACT meeting 2001, Tylösand, SwedenGoogle Scholar
  32. 32.
    Schlaeppi JM, Henke M, Mahnke M, Hartmann S, Schmitz R, Pouliquen Y, Kerins B, Weber E, Kolbinger F, Kocher HP (2006) Protein Expr Purif 50:185CrossRefGoogle Scholar
  33. 33.
    Singh V (1999) Cytotechnology 30:149CrossRefGoogle Scholar
  34. 34.
    Slivac I, Srček VG, Radoševic K, Kmetič I, Kniewald Z (2006) J Biosci 3:363CrossRefGoogle Scholar
  35. 35.
    Tang YJ, Ohashi R, Hamel JP (2007) Biotechnol Prog 23:255CrossRefGoogle Scholar
  36. 36.
    Weber W, Weber E, Geisse S, Memmert K (2002) Cytotechnology 38:77CrossRefGoogle Scholar
  37. 37.
    Weber W, Bacchus W, Daoud-El Baba M, Fussenegger M (2007) Nucleic Acids Res 35:e116CrossRefGoogle Scholar
  38. 38.
    Weber W, Stelling J, Rimann M, Keller B, Daoud-El Baba M, Weber CC, Aubel D, Fussenegger M (2007) PNAS 104:2643CrossRefGoogle Scholar
  39. 39.
    Hami LS, Chana H, Yuan V, Craig S (2003) BioProc J 2:23Google Scholar
  40. 40.
    Hamis LS, Green C, Leshinsky N, Markham E, Miller K, Craig S (2004) Cytotherapy 6:554CrossRefGoogle Scholar
  41. 41.
    Levine B (2007) Making waves in cell therapy: the Wave bioreactor for the generation of adherent and non-adherent cells for clinical use. ISCT_2007_Levine_Final.pdf. Cited November 4, 2007
  42. 42.
    Eibl R, Eibl D (2006) Design and use of the Wave Bioreactor for plant cell culture. In: Dutta Gupta S, Ibaraki Y (eds.) Plant tissue culture engineering, series: focus on biotechnology, vol 6. Springer, Dordrecht, p. 203Google Scholar
  43. 43.
    Eibl R, Eibl D, Pechmann G, Ducommun C, Lisica L, Lisica S, Blum P, Schär M, Wolfram L, Rhiel M, Emmerling M, Röll M, Lettenbauer C, Rothmaier M, Flükiger M (2003) Produktion pharmazeutischer Wirkstoffe in disposable Systemen bis zum 100 L Massstab, Teil 1. KTI-Projekt 5844.2 FHS, Final Report, University of Applied Sciences Wädenswil, Switzerland, unpublishedGoogle Scholar
  44. 44.
    Lisica S (2004) Energieeintrag in Wave-Bioreaktoren. Modelling approaches, University of Applied Sciences Wädenswil, Switzerland, unpublishedGoogle Scholar
  45. 45.
    CeLLution Biotech BV (2007) Mass transfer in the CELL-tainer ®disposable bioreactor. http:// Cited October 20, 2007
  46. 46.
    CeLLution Biotech BV (2007) Cultivation of PER.C6 ® -cells in the CELL-tainer ® disposable bioreactor. Cited October 20, 2007
  47. 47.
    CeLLution Biotech BV (2007) Cultivation of CHO-cells in the CELL-tainer ® disposable bioreactor. Cited October 20, 2007
  48. 48.
    Zijlstra G, Oosterhuis N (2007) Cultivation of PERC. 6®cells in the novel CELL-tainer™ high-performance disposable bioreactor. 20th ESACT meeting 2007, Dresden, Germany (poster)Google Scholar
  49. 49.
    Taylor, I (2007) The CellMaker Plus™ single-use bioreactor: a new bioreactor capable of culturing bacteria, yeast, insect and mammalian cells. Biotechnica, Hannover, GermanyGoogle Scholar
  50. 50.
    Auton KA, Bick JA, Taylor IM (2007) GEN 27:42Google Scholar
  51. 51.
    Ratcliffe A, Niklason L (2002) Bioreactors and bioprocessing for tissue engineering. Ann N Y Acad Sci 961:210Google Scholar
  52. 52.
    Nienow AW (2006) Cytotechnology 50:9CrossRefGoogle Scholar
  53. 53.
    Martin I, Wendt D, Heberer M (2004) Trends Biotechnol 22:80CrossRefGoogle Scholar
  54. 54.
    Altaras GM, Eklund C, Ranucci C, Maheswari G (2007) Biotechnol Bioeng 96:999CrossRefGoogle Scholar
  55. 55.
    Jenke D (2007) J Pharm Sci 96:2566CrossRefGoogle Scholar
  56. 56.
    Okonkowski J, Balasubramanian U, Seamans C, Fischrogen S, Zhang J, Lachs P, Robinson D, Chartrain M (2007) J Biosci Bioeng 103:50CrossRefGoogle Scholar
  57. 57.
    van Tienhoven EAE, Korbee D, Schipper L, Verharen HW, Jong De WH (2006) J Biomed Mater Res A78:175CrossRefGoogle Scholar
  58. 58.
    Pörtner R, Nagel-Heyer St, Goepfert C, Adamietz P, Meenen NM (2005) J Bioeng Biosci 100:235CrossRefGoogle Scholar
  59. 59.
    Ye H, Xia Z, Ferguson DJP, Triffitt JT, Cui Z (2007) J Mater Sci: Mater Med 18:641CrossRefGoogle Scholar
  60. 60.
    Safinia L, Panoskaltsis N, Mantalaris A (2005) Haematopoietic culture systems. In: Chaudhuri JB, Al-Rubeai M (eds.) Bioreactors for tissue engineering. Springer, Dordrecht, p. 309CrossRefGoogle Scholar
  61. 61.
    Cabrita GJM, Ferreira BS, da Silva CL, Goncales R, Almeida-Porada G, Cabral JMS (2003) TIBTECH 21:233Google Scholar
  62. 62.
    Tzanakakis ES, Verfaillie CM (2006) Advances in adult stem cell culture. In: Ozturk SS, Hu WS (eds.) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, New York, p. 693Google Scholar
  63. 63.
    Carswell KS, Papoutsakis ET (2000) Biotechnol Bioeng 68:328CrossRefGoogle Scholar
  64. 64.
    Purdy MH, Hogan CJ, Hami L, McNiece I, Franklin W, Jones RB, Bearman SI, Berenson RI, Cagnoni BI, Heimfeld S, Shpall EJ (1995) J Hematother 4:515Google Scholar
  65. 65.
    Robinet E, Certoux JM, Ferrand C, Maples P, Hardwick A, Cahn JY, Reynolds CW, Jacob W, Hervé, Tiberghien P (1998) J Hematother 7:205Google Scholar
  66. 66.
    Andrews RG, Briddell RA, Hill R, Gough M, McNiece IK (1999) Stem Cells 17:210CrossRefGoogle Scholar
  67. 67.
    CorCell Inc. (2003) Expansion of umbilical cord blood stem cells. healthcare/expansion.html. Cited August 30, 2008
  68. 68.
    Mu LJ, Gaudernack G, Saeboe-Larssen S, Hammerstad H, Tierens A, Kvalheim G (2003) Scand J Immunol 58:578CrossRefGoogle Scholar
  69. 69.
    Mu LJ, Lazarova P, Gaudernack G, Saeboe-Larssen S, Kvalheim G (2004) Int J Immunopathol Pharmacol 17:255Google Scholar
  70. 70.
    June CH, Ledbetter JA, Linsley PS, Thompson CB (1990) Immunol Today 11:211CrossRefGoogle Scholar
  71. 71.
    Wurm FM (2004) Nat Biotechnol 22:1393CrossRefGoogle Scholar
  72. 72.
    Wurm FM (2007) Novel technologies for rapid and low cost provisioning of antibodies and process details in mammalian cell culture based biomanufacturing. BioProduction, Berlin, GermanyGoogle Scholar
  73. 73.
    Schwander E, Rasmusen H (2005) GEN 25:29Google Scholar
  74. 74.
    De Palma A (2002) GEN 22:58Google Scholar
  75. 75.
    Vaughn J (1999) Insect cell culture, protein expression. In: Flickinger MC, Drew SW (eds.) Encyclopedia of bioprocess technology, vol 3. Wiley & Sons, New York, p. 1444Google Scholar
  76. 76.
    Weber W, Fussenegger M (2005) Baculovirus-based production of biopharmaceuticals using insect cell culture processes. In: Knäblein J (ed.) Modern biopharmaceuticals. Wiley VCH, Weinheim, Germany, p. 1045CrossRefGoogle Scholar
  77. 77.
    Durocher Y, Perret S, Kamen A (2002) Nucleic Acids Res 30:e9CrossRefGoogle Scholar
  78. 78.
    Wurm FM, Bernard A (1999) Curr Opin Biotechnol 313:156CrossRefGoogle Scholar
  79. 79.
    Haldankar R, Li D, Saremi Z, Baikalov C, Deshpande R (2006) Bioreactors Mol Biotechnol 34:191CrossRefGoogle Scholar
  80. 80.
    Rios M (2006) PharmaTech 4:1Google Scholar
  81. 81.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  82. 82.
    Ducos JP, Lambot C, Pétiard V (2007) Int J Dev Biol 1:1Google Scholar
  83. 83.
    Ducos JP, Chantanumat P, Vuong P, Lambot C, Pètiard V (2007) Acta Horticulturae 764:33Google Scholar
  84. 84.
    Collignon F, Gelbras V, Havelange N, Drugmand JC, Debras F, Mathieu E, Halloin V, Castillo J (2007) CHO cell cultivation and antibody production in a new disposable bioreactor based on magnetic driven centrifugal pump. Cited October 20, 2007
  85. 85.
    Hallmann S, Bertelsen HP, Scheffler U, Luttmann R (2007) Einsatz von Massflow-Controllern zur Steuerung von Bioreaktionsprozessen. Biotechnica, Hannover, Germany (poster)Google Scholar
  86. 86.
    Mikola M, Seto J, Amanullah, A (2007) Bioprocess Biosyst Eng 30:231CrossRefGoogle Scholar
  87. 87.
    Laderman K, Quezada V, Dunphy N, Anderson J, Derecho J, McMahom R, Hsu D, Couture L (2007) DNA production in the Wave Bioreactor under cGMP conditions. http://www. Cited November 6, 2007
  88. 88.
    Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM, Barz WH (eds.) Plant biotechnology and transgenic plants. Marcel Dekker, New York, p. 163Google Scholar
  89. 89.
    Palazón J, Mallol A, Eibl R, Lettenbauer C, Cusidó RM Piñol MT (2003) Planta Med 69: 344CrossRefGoogle Scholar
  90. 90.
    Bentebibel S, Moyano E, Palazón J, Cusidó RM, Bonfill M, Eibl R, Piñol MT (2005) Biotechnol Bioeng 89:647CrossRefGoogle Scholar
  91. 91.
    Girard LS, Fabis MJ, Bastin M, Courtois D, Pétiard V, Koprowski H (2006) Biochem Biophys Res Commun 345:602CrossRefGoogle Scholar
  92. 92.
    Kilani J, Lebeaut JM (2006) Appl Microbiol Biotechnol 74:324CrossRefGoogle Scholar
  93. 93.
    Terrier B, Courtois D, Hénault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Pétiard V (2006) Biotechnol Bioeng 96:914CrossRefGoogle Scholar
  94. 94.
    Eibl R, Eibl D (2007) Phytochem Rev DOI: 10.1007/s 11101-007-9083-zGoogle Scholar
  95. 95.
    Cuperus S, Eibl R, Hühn T, Amado R (2007) BioForum Europe 6:2Google Scholar
  96. 96.
    Bonfill M, Bentebibel S, Moyano E, Palazón J, Cusidó RM, Eibl R, Piñol MT (2007) BIOL PLANT 51:647CrossRefGoogle Scholar
  97. 97.
    DÀquino R (2006) Chem Eng Prog 102:8Google Scholar
  98. 98.
    Houtzager E, van der Linden R, de Roo G, Huurman S, Priem P, Sijmons C (2005) BioProcess Int 3:60Google Scholar
  99. 99.
    Pierce LN, Sabraham PW (2004) Bioprocessing J 3:51Google Scholar
  100. 100.
    Curtis WR (2004) United States Patent, 6,709,862 B2Google Scholar
  101. 101.
    Ziv M, Ronen G, Raviv M (1998) Dev Biol-Plant 34:152Google Scholar
  102. 102.
    Harrell RC, Bienek M, Hood CF, Munilla R, Cantliffe DY (1994) Plant Cell Tissue Org Cult 39:171CrossRefGoogle Scholar
  103. 103.
    Fukui H, Tanaka M (1995) Plant Cell Tissue Org Cult 41:17CrossRefGoogle Scholar
  104. 104.
    Escalona M, Lorenzo JC, Gonzalez BL, Daquinta M, Gonzalez JL, Desjardine Y, Borroto CG (1999) Plant Cell Rep 18:743CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. Eibl
    • 1
  • D. Eibl
    • 1
  1. 1.Zurich University of Applied Sciences, School of Life Sciences and Facility ManagementInstitute of BiotechnologySwitzerland

Personalised recommendations