Skip to main content

Physical Properties and Associated Applications of Conducting Polymers

  • Chapter
  • 2237 Accesses

Abstract

A great number of articles, reviews, and books about conducting polymers and their applications are available in the literature [1]. As mentioned in Chapter 1, the intrinsically conductive nature of the conducting polymers arises from a unique bonding structure along the polymer backbone, consisting of alternating double (π) and single (π) bonds. If an electron is added to the conjugated polymer backbone (via reduction, n-type doping) or removed from it (via oxidation, p-type doping) during the chemical or electrochemical doping process, then the charge can freely travel down these conjugation paths when an electrical potential is applied. The electrical conductivity covers whole insulator (<10−7 S/cm)-semiconductor (10−5 to 10−1 S/cm)-metal (102 to 105 S/cm) range depending on the doping degree. The conductivity achieved depends strongly on the type of dopant, the polymer characteristics (such as specific repeat unit and molecular mass, chain defects such as branching and chemical heterogeneity), and how the polymer was processed. For example, stretching doped conducting polymer films can increase their conductivity by two orders of magnitude as a result of the anisotropic alignment of the polymer chains [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a) An Introduction to Molecular Electronic (Eds. M. C. Petty, M. R. Bryce, D. Bloor, E. Arnold). Edward Arnold: London, 1995; b) Handbook of Conducting Polymer (Ed. T. A. Skotheim). Marcel Dekker: New York, 1986 and 1998; c) Conductive Electroactive Polymers (Ed. G.G. Wallace; G. M. Spinks; P. R. Teasdale). Technomic Publishing Co.: Lancaster, MI, 1997; d) One-Dimensional Metals: Physics and Material Science (Ed. S. Roth). VCH: Weinheim, Germany, 1995; e) In Advanced Membrane Technology (Ed. Li, N. N., E., Ho Drioli, W. S. W., Lipscomb, G. G.). Ann. NY Acad. Sci.: New York, 2003

    Google Scholar 

  2. M. F. Hundley, P. N. Adams, B. R. Mattes. Synth. Met., 2002, 129: 291

    CAS  Google Scholar 

  3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. H. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes. Nature, 1990, 347: 539

    CAS  Google Scholar 

  4. a) G. Grem and G. Leising. Synth. Met., 1993, 57: 4105; b) J. Gruner, H. F. Wittmann, P. J. Hamer, R. H. Frien, J. Huber, U. Scherf, K. Mullen, S. C. Moratti, and A. B. Holmes. Synth. Met., 1994, 67: 181; c) M. Hamaguchi and K. Yoshino. Jpn. Appl. Phys. Lett., 1995, 34: L587

    CAS  Google Scholar 

  5. C. Zhang, H. von Seggern, K. Pakbaz, B. Kraabel, H. W. Schmidt, and A. J. Heeger. Synth. Mett.; 1994, 62: 35

    CAS  Google Scholar 

  6. V. Ohmori, M. Uchida, K. Muro, and K. Yoshino. Jpn. Appl. Phys. Lett., 1991, 30: L1941

    Google Scholar 

  7. M. Berggren, O. Inganas, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjecberg, and O. Wennerstrom. Nature, 1994, 372: 444

    CAS  Google Scholar 

  8. M. S. Sze. Physics of Semiconductor Devices. Wiley-Interscience, New York, 1981; B. L. Sharma (Ed.), Metal-Semiconductor Schottky Barrier Junctions and Their Applications. Plenum, New York, 1984

    Google Scholar 

  9. T. Tsutsui and S. Saito, NATOASI Ser. E. Appl.Sci., 1993, 246: 123

    CAS  Google Scholar 

  10. P. Kay. Phys. World, P. 52, March 1995

    Google Scholar 

  11. C. H. Lee, G. Yu, D. Moses, A. J. Heeger. Appl. Phys. Lett., 1994, 65: 664

    CAS  Google Scholar 

  12. D. Adarm et al. Nature, 1994, 371: 141

    Google Scholar 

  13. a) B. A. Gregg, M. A. Fox, A. J. Bard. J. Phys. Chem., 1990, 94: 1586; b) C. Y. Liu, H. L. Pan, H. Tang, M. A. Fox, A. J. Bard. ibid., 1995, 99: 7632

    CAS  Google Scholar 

  14. R. N. Marks, J. J. M. Halls, D. D. D. C. Bradley, R. H. Frield, A. B. Holmes. J. Phys. Condens. Mater., 1994, 6: 1379

    CAS  Google Scholar 

  15. a) P. T. Landsberg, T. Markvart. Solid-State Electron, 1998, 42: 657; b) T. Markvart, P. T. Landsberg. Polysica E., 2002, 14: 71

    CAS  Google Scholar 

  16. a) C. J. Brabec, N. S. Sariciftci, J. C. Hummelen. Adv. Funct. Mater., 2001, 11: 15; b) N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wuldl. Science, 1992, 258: 1474; c) C. W. Tang, Appl. Phys. Lett., 1986, 48: 183; d) C. J. Brabec, F. Padinger, N. S. Sariciftcil. J. Appl. Phys., 1999, 85: 6866; e) M. GranstrÖm, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend. Nature, 1998, 395: 257

    CAS  Google Scholar 

  17. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger. Science, 1995, 270: 1789

    CAS  Google Scholar 

  18. J. Bisquert, D. Cahen, G. Hodes, S. Rühle, and A. Zaban. J. Phys. B., 2004, 108: 8106

    CAS  Google Scholar 

  19. F. Padinger, R. S. Rittberger, and Niyazi S. Sariciftci. Adv. Funct. Mater., 2003, 13: 85

    CAS  Google Scholar 

  20. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen. Appl. Phys. Lett., 2001, 78: 841

    CAS  Google Scholar 

  21. N. S. Sariciftci, and A. J. Heeger. U.S. Patent 5,3,1,183 (1994), U.S. Patent 5,454, 880 (1995); G. Yu and A. J. Heeger. J. Appl. Pyhs., 1995, 78: 4510

    Google Scholar 

  22. a) S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromberz, J. C. Hummelen. Appl. Phys. Lett., 2001, 78: 841; b) M. T. Rispens, A. Meetsma, R. Rittberger, C. J. Brabec, N. S. Sariciftci, J. C. Hummelen. Chem. Commun., 2003, 2116

    CAS  Google Scholar 

  23. a) M. Prato. J. Mater. Chem., 1997, 7: 1097; b) M..T. Rispens, L. Sanchez, J. Knol, J. C. Hummelen. Chem. Commun., 2001, 161; c) L. Sanchez, M. T. Rispens, J. C. Hummelen. Angew. Chem., 2002, 41: 838

    CAS  Google Scholar 

  24. N. C. Greenham, X..G. Peng, A. P. Alivisatos. Phys. Rev. B., 1996, 54: 17628

    CAS  Google Scholar 

  25. W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, A. P. Alivisatos. Adv. Funct. Mater., 2003, 13: 73

    CAS  Google Scholar 

  26. J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Fre’chet. J. Am. Chem. Soc., 2004, 126: 6550

    CAS  Google Scholar 

  27. B. A. Gregg, F. Pichot, S. Ferrere, and Clark L. Fields. J. Phys. Chem. B., 2001, 103: 1422–1429

    Google Scholar 

  28. J. Bisquert, D. Cahen, G. Hodes, S. Rühle, and A. Zaban. J. Phys. B., 2004, 108: 8106

    CAS  Google Scholar 

  29. O’Regan B., Grätzel, M. Nature, 1991, 353: 737

    CAS  Google Scholar 

  30. S. Tan, J. Zhai, B. Xue, M. Wan, Q. Meng, Y. L, L. Jiang and D. Zhu. Langmuir, 2004, 2934

    Google Scholar 

  31. F. Padinger, R. S. Rittberger, and Niyazi, S. Sariciftci. Adv. Funct. Mater., 2003, 13: 85

    CAS  Google Scholar 

  32. J. L. N. Violette, D. R. J. White, M. F. Violette. Electromagnetic Compatibility Handbook, Van Nostrand Reinhold Company: New York, 1987.

    Google Scholar 

  33. a) C. Y. Lee, H. G. Song, K. S. Jang, E. J. Oh. Synth. Met., 1999, 102, 1346; b) X. C. Luo, D. D. L. Chuan. Composites: Part B, 1999, 30: 227

    CAS  Google Scholar 

  34. a) J. Joo, A. J. Epstein. Appl. Phys. Lett., 1994, 65: 2278; b) A. J. Epstein, M.G. Roe, J. M. Ginder, H. H. S. Javadi, J. Joo. Electromagnetic Radiation Absorbersand Modulators Comprising Polyaniline, US Patent No.5,563,182, 1996; c) N. F. Colaneri, L. W. Shacklette. IEEE Trans. Instrum. Meas., 1992, 41: 291

    CAS  Google Scholar 

  35. S. K. Dhawan, N. Singh, S. Venkatachalam. Synth. Met., 2002, 129: 261

    CAS  Google Scholar 

  36. Y. Y. Wang and X. L. Jing. Poly. Adv. Tech., 2005, 16: 344

    CAS  Google Scholar 

  37. J. Joo, C. Y. Lee. J. Appl. Phys,.2000, 88: 513

    CAS  Google Scholar 

  38. Y.-P. Duan, S. H. Liu, and H. T. Guan. Sci. Tech. Adv. Mater., 2005, 6: 513

    CAS  Google Scholar 

  39. J. A. Pomposo, J. Rodriguez, H. Grande. Synthetic Met., 1999, 104: 107

    CAS  Google Scholar 

  40. A. Kaynak. Materials Research Bulletin, 1996, 31: 845

    CAS  Google Scholar 

  41. E. F. Knott, J. F. Schaeffer, M. T. Radar. Cross Section Handbook. Artech House: New York, 1993, p. 237.

    Google Scholar 

  42. International Encyclopedia of Composites, VHC:, New York, 1991, vol.6.

    Google Scholar 

  43. P. Annadurai, A. K. Mallick, D. K. Tripathy. J. Appl. Polym. Sci., 2002, 83: 145

    CAS  Google Scholar 

  44. H. S. Nalwa (ed.). Handbook of Organic Conductive Molecules and Polymers (four volumes), Wiley, New York, 1997

    Google Scholar 

  45. P. Chandrasekhar. Conducting Polymers: fundamental and Applications, A Practical Approach. Kluwer Academic Publishers, 1999

    Google Scholar 

  46. A. Kaynak. Mater. Res. Bull., 1996, 845: 8609

    Google Scholar 

  47. R. Faez, I. M. Martin, M.-A. De Paoli, M. C. Rezende. Synth. Met., 2001, 119: 435

    CAS  Google Scholar 

  48. H. H. S. Javadi, K. R. Cromack, A. G. MacDiarmid, J. A. Epstein. Phys. Rev. B: Condens. Matter, 1989, 39: 3579

    CAS  Google Scholar 

  49. S. M. Abbas, A. K. Dixit, R. Chatterjee, and T. C. Goel. Mater. Sci. Eng. B, 2005, 123: 167

    Google Scholar 

  50. P. M. Jayan. Chem. Rev., 1999, 99: 1787

    Google Scholar 

  51. E. T. Thostenson, Z. Ren, T.-W. Chou. Compos. Sc. Technol., 2001, 61: 1899

    CAS  Google Scholar 

  52. D. A. Makeiff, T. Huber. Synth. Met., 2006, 156: 597

    Google Scholar 

  53. R. Faez, I. M. Artin, M. De. Paoli, M. C. Rezende. J. Appl. Polym. Sci., 2002, 83: 1568

    CAS  Google Scholar 

  54. a) Y. Cao, M. X. Wan, S. Z. Li, J. C. Li. Chinese Patent No.891005956, 1990. 9. 6; b) M. X. Wan, W. X. Zhou and J. C. Li. Chinese Patent No. 95124933.9, 1996. 7. 7; c) M. X. Wan, S. Z. Li and J. C. Li. Chinese Patent No. 95124945.2, 2000.1.12

    Google Scholar 

  55. L. N. Zakharev, A. A. Lemanskii. Wave Scattering by Black Bodies. Moscow, Sovetskoe Radio, 1972

    Google Scholar 

  56. S. E. Lindsey, G. B. Street. Synth. Met., 1984, 10: 67; UK Patent 2192756, 1988

    CAS  Google Scholar 

  57. a) A. F. Diaz, J. I. Castillo. J. Chem. Soc. Chem. Commun., 1980, 397; b) A. J. Heeger. J. Phys. Chem. B, 2001, 105: 8475

    Google Scholar 

  58. T. Ito, H. Shirakawa, S. Ikeda. J. Polym. Sci.(Polym. Chem.Ed), 1974, 12: 11

    CAS  Google Scholar 

  59. G. Mengoli, M. M. Musiani, D. Pletcher, S. Valcher. J. Appl. Electrochem., 1987, 17: 515

    CAS  Google Scholar 

  60. J. Roncali. J. Chem. Rev., 1992, 92: 711

    CAS  Google Scholar 

  61. L. W. Shacklette, R. L. Elsenbaumer, R. R. Chance, J. M. Sowa, D. M. Ivory, G. G. Miller G. G, R. H. Baugman. J. Chem. Soc. Chem. Commun., 1982, 361

    Google Scholar 

  62. a) P. Novak, K. Muller, K. S. V. Santhanam, O. Haas. Chem. Rev., 1997, 97: 207; b) M. D. Levi, Y. Gofe and D. Aurbach. Polym. Adv. Mater., 2002, 13: 697

    CAS  Google Scholar 

  63. S. C. Ng, and P. Miao. Macromolecules, 1999, 32: 5313

    CAS  Google Scholar 

  64. K. S. Ryu, S. K. Jeong, J. Joo, and K. M. Kim. J. Phys. Chem. B. (published on web01/05/2007]

    Google Scholar 

  65. Q. C. Gu, H. S. Xu. J. Appl. Polym. Sci., 1997, 66: 537

    CAS  Google Scholar 

  66. M. A. Ratner, D. F. Shriver. Chem. Rev., 1988, 88: 109; J. Plocharski, H. Wycislik. Solid State Ionics, 1994, 69: 309

    CAS  Google Scholar 

  67. N. Costantini, G. Wegner, M. Mierzwa, T. Pakula. Macromol. Chem. Phys., 2005, 206: 1345

    CAS  Google Scholar 

  68. G. R. Pedro. Adv. Mater., 2001, 13, 163; G. R. Pedro and T. G. Gloria. Adv. Mater., 2000, 12: 1454

    Google Scholar 

  69. T. G. Gloria, M. T. R. Eva, G. R. Pedro. Chem. Mater., 2001, 13: 3693

    Google Scholar 

  70. P. Gomez-Romero, M. Lira-Cantu. Adv. Mater., 1997, 9: 144

    CAS  Google Scholar 

  71. M. Lira-Cantu, P. Gomez-Romero. Chem. Matyer., 1998, 10: 698

    CAS  Google Scholar 

  72. S. Ye, and D. Be’langer. J. Phys. Chem., 1996, 100: 15848

    CAS  Google Scholar 

  73. M. Liu, S. J. Visco, L.C. A. DeJonghe. J. Electrochem. Soc., 1990, 137: 750

    CAS  Google Scholar 

  74. a) E. M. Genie’s, S. Picart. Synth. Met., 1995, 69: 165; b) N. Oyama, T. Tatsuma, T. Sato, T. Sotomura. Nature, 1995, 373: 598

    CAS  Google Scholar 

  75. B. E. Conway. Electrochemical Suppercapacitors: Scientific Fundamentals and Technological Application. Kluwer Academic/Plenum: Dordrecht, 1999

    Google Scholar 

  76. M. Winter, and R. J. Brodd. Chem. Rev., 2004, 104: 4245

    CAS  Google Scholar 

  77. S. A. Hashmi, R. J. Latham, R. G. Linford, and W. S. Schlindwein. Poly. International, 1998, 47: 28

    CAS  Google Scholar 

  78. a) A. Nishino; J. Power, Sources, 1996, 60, 137; b) J.P. Zheng, T.R. Jow; J. Electrochem. Soc. 1995, 142: L6

    CAS  Google Scholar 

  79. F. Marchioni, J. Yang, W. Walker, and F. Wudl. J. Phys. Chem. B, 2006, 110: 22202

    CAS  Google Scholar 

  80. a) A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld. J. Power Sources, 1994, 47: 89; b) A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld. Electrochim. Acta, 1994, 37: 273

    CAS  Google Scholar 

  81. Y. G. Wang, H. Q. Li, and Y. Y. Xia. Adv. Mater., 2006, 18: 2619

    CAS  Google Scholar 

  82. a) G. S. Attard, P. N. Barltett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, J. H. Wang. Science, 1997, 278: 838; b) G. Niu, K. Sichel, R. Hoch, D. Moy, H. Tennent. Appl. Phys. Lett., 1997, 70: 1480; c) S. Ghosh and O. Inganäs. Adv. Mater., 1999, 11: 1214

    CAS  Google Scholar 

  83. A. G. McDiarmid, J. C. Chiang, M. Halpern, W. Huang, S. Mu, N. L. D. Somasiri, W. Wu, S. T. Yaniger. Mol. Crst. Liq. Cryst., 1985, 121: 173

    Google Scholar 

  84. Y. Sato, K. Yomogida, T. Nanaumi, K. Kobayakawa, O. Yasuhiko, M. Kawai. Electrochem. Solid-State Lett., 2000, 3: 113

    CAS  Google Scholar 

  85. V. Gupta, N. Miura. Electrochem. Sold-State Lett., 2005, 8: A630

    CAS  Google Scholar 

  86. Y. Y. Wang, H. Q. Li and Y. Y. Xia. Adv. Mater., 2006, 18: 2619

    CAS  Google Scholar 

  87. C. Zhou, and S. Kum. Chem. Mater., 2005, 17: 1997

    CAS  Google Scholar 

  88. E. Frackowiak, K. Jurewica, S. Delpeux, F. Beguin. J. Power Sources, 2001, 97–98: 822

    Google Scholar 

  89. a) J. N. Barisci, G. G. Wallance, D. R. MacFarlane, R. H. Baughman. Electrochem. Commun., 2004, 6: 22; b) J. N. Barisci, G. G. Wallance, D. Chattopadhyay, F. Papadimitrakopoulos, R. H. J. Baughman. J. Electrochem. Soc., 2003, 150: E409

    CAS  Google Scholar 

  90. a) K. Juewicz, S. Delpeux, V. Bertagna, F. Beguin, E. Frackowiak. Chem. Phys. Lett., 2001, 347: 36; b) K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, Y. H. Lee. J. Elctrochem. Soc., 2002, 149: A1058; c) M. Hughes, M. S. P. Shaffer, A.C. Renouf, C. Singh, G. Z. Chen, D. J. Fray, A. H. Windle. Adv. Mater., 1999, 11: 1028

    Google Scholar 

  91. R. M. Dell, D. A. J. Rand. J. Power Sources, 2001, 100: 2

    CAS  Google Scholar 

  92. A. Karina Cuentas-Gallegos, Monica Lira-Cantu’, Nieves Casañ-Pastor, and Pedro Gómez-Romero. Adv. Funct. Mater., 2005, 15: 1125

    CAS  Google Scholar 

  93. A. J. Heeger. Angew. Chem. Let. Edn., 2001, 40: 2591

    CAS  Google Scholar 

  94. A.G. MacDiamid, A. J. Epstein. Synth. Met., 1995, 69: 85

    Google Scholar 

  95. J. Janata and M. Josowicz. Nature, 2003, 2: 19

    CAS  Google Scholar 

  96. M. Angelopoulos. IBM J. Res. De., 2001, 45: 57

    CAS  Google Scholar 

  97. Handbook of Advanced Electronic and Photonic Materials and Devices Vol.10 (ed. H.S. Nalwa), New York, 2001

    Google Scholar 

  98. Polymer Sensors and Actuators (eds Y. Osada and E. D. de Rossi), Springer, Berlin, 2000

    Google Scholar 

  99. K. H. An, S. Y. Jeong, H. R. Hwang, and Y. H. Lee. Adv. Mater., 2004, 16: 1005

    CAS  Google Scholar 

  100. W. Zheng et al. Synth. Met., 1997, 84: 63

    CAS  Google Scholar 

  101. D. K. Leng, Y. Williams, C. C. Janata, D. Petelenz. Appl. Phys. Lett., 1993, 63: 1413

    Google Scholar 

  102. P. C. Wang, Z. Huang, A. G. MacDiarmid. Synth. Met., 1999, 101: 852

    CAS  Google Scholar 

  103. E. Stussi, R. Stella, D. De Rossi. Sens. Actuators B, 1997, 43: 180

    Google Scholar 

  104. C. P. De Melo, C. G. Dos Santos, A. M. S. Silva, F. L. Dos Santos, J. E. De Souza. Mol. Cryst. Liq. Cryst., 2002, 374: 543

    Google Scholar 

  105. a) P. T. Sotomayor, I. M. Raimundo, J. G. Zarbin, J. J. R. Rohwedder, G. O. Neto, O. L. Alves. Sens. Actuators B, 2001, 74: 157; b) M. Kanugno, A. kumar, A. Q. Contractor. J. Electroanal. Chem., 2002, 528: 46; c) M. Matsuguchi, J. Io, G. Sugiyama, Y. Sakai. Synth. Met., 2002, 128: 15; d) Y. B. Wang, G. A. Sotzing, R. A. Weiss. Chem. Mater., 2003, 15: 375

    Google Scholar 

  106. U. Kang, K. D. Wise. IEEE Trans. Electron. Devices, 2000, 47: 702

    CAS  Google Scholar 

  107. J. Huang, S. Virji, B. H. Weiller, and R. B. Kaner. Chem. Eur. J., 2004, 10: 1414

    Google Scholar 

  108. a) J. Liu, Y. H. Lin, L. Liang, J. A. Voigt, D. L. Huber, Z. R. Tian, E. Coker, B. Mckenzie, M. J. Mcdermott. Chem. Eur. J., 2003, 9: 605; b) J. Huang, S. Virji, B. H. Weiller, R. B. Kaner. J. Am. Chem. Soc., 2003, 125: 314

    Google Scholar 

  109. H.-A. Ho, M. B-Aberem, and Leclerc. Chem. Eur. J., 2005, 11: 1718

    CAS  Google Scholar 

  110. a) H. S. White, G. P. Kittlesen, M. S. Wrighton. J. Am. Chem. Soc., 1984, 106: 5375; b) G. P. Kittlesen, H. S. White, M. S. Wrighton. J. Am. Chem. Soc., 1984, 106: 7389

    CAS  Google Scholar 

  111. R. M. Hernadez, L. Richter, S. Semanick, S. Stranik, T. E. Mallouk. Chem. Mater., 2004, 16: 3431

    Google Scholar 

  112. K. Ramanathan, M. A. Bangar, M. Y. Yun, W. Chen, N. V. Myung and A. Mulchandani. J. Am. Chem. Soc., 2005, 127: 498

    Google Scholar 

  113. a) G. Fasol. Science, 1996, 272: 1751; b) S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama. Jpn. J. Appl. Phys., 1995, 34: L797; c) S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto. Jpn. J. Appl. Phys., 1996, 35: L74

    CAS  Google Scholar 

  114. J. R. Platt. J. Chem. Phys., 1961, 34: 826

    Google Scholar 

  115. a) S. K. Deb. Appl. Optics.(Suppl), 1969, 3: 192; b) G. V. Granqvist. Phys. Thin Films, 1993, 17: 301

    Google Scholar 

  116. a) L. Michaelis, E. S. Hill. J. Gen. Physiol., 1993, 16: 859; b) C. L. Bird, A. T. Kühn. Chem. Soc. Rev., 1981, 10: 49

    Google Scholar 

  117. a) M. Green. Chem. Ind., 1996, 641; b) R. A. Batchelov, M. S. Burdis, J. R. Siddle. J. Electrochem. Soc., 1996, 143: 1050

    Google Scholar 

  118. H. W. Heuer, R. Wehrmann, and S. Kirchmeyer. Adv. Funct. Mater., 2002, 12: 8994

    Google Scholar 

  119. a) C. W. Tang, S. A. Van Slyke. Appl. Phys. Lett., 1987, 51: 913; b) J. S. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, A. Stocking. Science, 1996, 273: 884

    CAS  Google Scholar 

  120. a) H. W. Heuer, R. Wehrmann, S. Kirshmeyer. Adv. Funct. Mater., 2002, 12: 89; b) P. Chandrasekhar, T. Dooley. J. Proc. SPIE, 1995, 169: 2528; c) P. Topart, P. Hourquebie. Thin Slid. Films, 1999, 352: 243; d) G. A. Sotzing, J. R. Reynolds. Chem. Mater., 1996, 8: 882

    CAS  Google Scholar 

  121. a) N. Tessler. Adv. Mater., 1999, 11: 363; b) N. Tessler, G. J. Denton, R. H. Friend. Nature, 1996, 382: 695; c) M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miler, D. Moses, A. J. Heeger. Appl. Phys. Lett., 1998, 72: 1536; d) N. Suganuma, C. Adachi, T. Koyama, Y. Taniguchi, H. Shiraishi. Appl. Phys. Lett., 1999, 74: 1

    CAS  Google Scholar 

  122. A. G. MacDiarmid. Angew. Chem. Int. Ed., 2001, 40: 2581

    CAS  Google Scholar 

  123. a) T. K. Obayashi, H. Yoneyama, T. Tamura. J. Electroanal. Chem., 1984, 161: 419; b) T. Kobayashi, H. Yoneyama, T. Tamura. J. Electroanal. Chem., 1984, 177: 281; c) J. E. Dubois, F. Garnier, G. Tourillon, M. Gazard. J. Electroanal. Chem., 1983, 148: 299; d) E. W. Tsai, S. Basok, J. P. Ruiz, Reynolds, K. Rajeshwar. J. Electroanal. Chem., 1989, 136: 3683

    Google Scholar 

  124. H. W. Heuer, R. Wehrmann, and S. Kirchmeyer. Adv. Funct. Mater., 2002, 12: 89

    CAS  Google Scholar 

  125. I. Schwendeman, R. Hickman, G. Sönmez, P. Schottland, K. Zong, D. M. Welsch, J. R. Reynolds. Chem. Mater., 2002, 14: 3118

    CAS  Google Scholar 

  126. P. H. Aubert, A. A. Argun, A. Cirpan, D. B. Tanner, and J. R. Reynolds. Chem. Mater., 2004, 16: 2386

    CAS  Google Scholar 

  127. S. F. Frolov, Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, R. V. Gregory. Appl. Phys. Lett., 1998, 72: 2811

    CAS  Google Scholar 

  128. D. M. Delongchamp, and P. T. Hammond. Chem. Mater., 2004, 16: 4799

    CAS  Google Scholar 

  129. G. Decher, J. D. Hong, J. Schmitt. Thin Solid Films, 1992, 210: 831

    Google Scholar 

  130. D. D. Longchamp, and P. T. Hammond. Adv. Mater., 2001, 13: 1455

    Google Scholar 

  131. D. M. Delongchamp, and P. T. Hammond. Chem. Mater., 2004, 16: 4799

    CAS  Google Scholar 

  132. F. Huguenin, M. Ferreira, V. Zucolotto, F. C. Nart, R. M. Torresi, and O. N. O. Jr. Chem. Mater., 2004, 16: 2293

    CAS  Google Scholar 

  133. E. Kim, and S. Jung. Chem. Mater., 2005, 17: 6381

    CAS  Google Scholar 

  134. a) G. Horanyi and G. Inzelt. Electrochim. Acta, 1988, 33: 947; b) G. Tourillon and F. Garnier. J. Electroanal. Chem., 1984, 161: 51; c) T. Yeu, K.-M. Yin, J. Carbajal, and R. E. White. J. Electrochem. Soc., 1991, 138: 2869; d) Y. Qiu and J. R. Reynolds. Polym. Eng. Sci., 1991, 31: 6; e) R. M. Penner, L. S. Van Dyke and C. R. Martin. J. Phys. Chem., 1988, 92: 5274; f) A. Talaie and G. G. Wallance. Synth. Met., 1994, 63: 83

    CAS  Google Scholar 

  135. a) T. F. Otero, J. M. Sansinena. Biolectrochem. Bioenerg., 1995, 38: 411; b) R. H. Baughman. Synth. Met., 1996, 78: 339

    CAS  Google Scholar 

  136. a) E. Smela, O. Inganäs, I. LundstrÖm. Science, 1995, 268: 1735; b) Q. Pei, O. Inganäs, I. LundstrÖm. Smart Mater. Sruct., 1993, 2: 1; c) Q. Pei, O. Inganäs, I. LundstrÖm. Adv. Mater., 1992, 4: 277; d) K. Akaaneto, Y. Min, A. G. MacDiarmid. U.S. Patent 5,556.700, 1996

    CAS  Google Scholar 

  137. R. H. Baughman, L. W. Shacklette, R. L. Elsenbaume, E. J. Plichta and C. Becht. in Molecular Electronics (P. I. Lazarev, ed). Kluwer, Dordrecht, Netherland, 1991

    Google Scholar 

  138. a) T. F. Otero, and J. Rodriguez. in Intrinsically Conducting Polymers, An Emerging Technology (M. Aldissi, ed.). Kluwer, Doddrecht, 1993, p.179; b) Q. Pei and O. Inganas. Synth. Met., 1993, 55-57: 3718; c) T. F. Otero and J. M. Sansinena. Bioelectrochemi. Bioenerg., 1995, 38: 411; d) T. F. Otero and M. T. Cortes. Adv. Mater., 2003, 15: 279

    Google Scholar 

  139. a) K. Kaneto, M. Kaneko, Y. Min and A. G. MacDiarmid. Synth. Met., 1995, 71: 2211; b) W. Takashima, M. Kaneko, K. Kaneto, A. G. MacDiarmid. Synth. Met., 1995, 71: 2265; c) W. Takashima, M. Fukui, M. Kaneko, and K. Kaneto. Jpn. J. Appl. Phys., 1995, 34: 3786

    CAS  Google Scholar 

  140. a) X. Chen and O. Inganas. Synth. Met., 1995, 74: 159; b) S. Morita, S. Shakuda, T. Kawai and K. Yoshino. Synth. Met., 1995, 71: 2231

    CAS  Google Scholar 

  141. L. Bay, K. West, N. Vlachopoulos, S. Skaarup. Presented at Proc. SPIE Int. Soc. Opt. Eng., Newport Beach, CA, 2001, 5–8: 54

    Google Scholar 

  142. M. Satoh, K. Kaneto, K. Yoshino. Synth. Met., 1998, 14: 289

    Google Scholar 

  143. W. Lu, E. Smela, P. Adams, G. Zuccarello, and B. R. Mattes. Chem. Mater., 2004, 16: 1615

    CAS  Google Scholar 

  144. a) A. M. Fennimore, T. D. Yuzvinsky, W.-Q. Han, M. S. Fuhrer, J. Cumings, A. Zettl. Nature, 2003, 424: 408; b) H. G. Craighead. Science, 2000, 290: 1532; c) A. Requicha. Proc. IEEE, 2003, 91: 1922; d) Yevgeny Berdichevsky and Yu-Hwa Lo. Adv. Mater., 2006, 18: 122

    CAS  Google Scholar 

  145. a) M. G. Fontana. Corrosion Engineering. McGraw-Hill, New York, 1986; b) D. A. Jones. Principle and Prevention of Corrosion. Prentice Hall, New York, 1996; c) H. H. Uhlig and R. W. Reive. Corrosion and Corrosion Control. Wiley, New York, 1985

    Google Scholar 

  146. R. M. Hudson and C. J. Warning. Matal. Finish, 1996, 64: 63

    Google Scholar 

  147. D. W. DeBerry. J. Electrochem. Soc., 1985, 132: 1022

    CAS  Google Scholar 

  148. A. G. MacDiarmid. Short Course on Conductive Polymers. SUNY, New Paltz, N.Y. 1985

    Google Scholar 

  149. a) C. C. Abdel-Aal and F. H. Assaf. Trans. SAEST, 1980, 15: 107; b) C. C. Nathan. Corrosion, 1953, 9: 199

    CAS  Google Scholar 

  150. S. Jasne and C. Chiklis. Synth. Met., 1986, 15: 175

    CAS  Google Scholar 

  151. W. J. Koros and G. K. Fleming. J. Membrane Sci., 1993, 83: 1

    CAS  Google Scholar 

  152. J. Henis and M. K. Tripoli. Science, 1983, 200: 11

    Google Scholar 

  153. a) M. G. Kanadthidis. Chem. Eng. News, 1990, 68: 36; b) M. R. Aderson, B. R. Mattes, H. Reiss and R. B. Kaner. Synth. Met., 1991, 41–43: 1151; c) R. B. Kaner, M. R. Anderson, B. R. Mattes, and H. Reiss. U.S.Patents 5,095,586 (Mar.17, 1992) and 5,358,556 (Oct.24, 1994)

    Google Scholar 

  154. M. R. Anderson, B. R. Mattes, H. Reiss and R. B. Kaner. Science, 1991, 252: 1412

    CAS  Google Scholar 

  155. a) S. Kuwabata and C. R. Martin, J. Membrane. Science, 1994, 91: 1; b) L. Rebattet, M. Escoubes, E. Genies, and M. Pineri. J. Appl. Polym. Sci., 1995, 57: 1595

    CAS  Google Scholar 

  156. J. P. Yang, Q. S. Sun, X. H. Hou and M. X. Wan. Chinese J. Polym. Sci., 1993, 11: 121

    CAS  Google Scholar 

  157. a) W. LÖbel. Mater. Sci., 1990, 16: 73; b) E. K. Sichel (ed). Carbon Black Polymer Composites. Marcel Dekker, New York, 1982

    Google Scholar 

  158. a) H. Ebneth. Melli and Textilber, 1981, 62: 297 b) W. C. Smith. J. Coated Fabr., 1988, 17: 242

    CAS  Google Scholar 

  159. a) R. V. Gregory, W. C. Kimbrell, and H. H. Kuhn. Synth. Met., 1998, 28: C623; b) E. M. Genies, C. Petrescu, and L. Olemedo. Synth. Met., 1991, 41: 665; c) H. H. Kuhn, and W. C. Kimbrell. U.S.Patents 4,803,096 (1989) and 4,975,317 (1990)

    Google Scholar 

  160. R. B. Bjorklund and I. LundstrÖm. J. Electron. Mater., 1984, 13: 211

    CAS  Google Scholar 

  161. A. E. Wiersma and L. M. A. Van de Steeg. Patent 0,589, 529 A1 (1994)

    Google Scholar 

  162. H. H. Kuhn, W. C. Kimbrell, G. Worrell, and C. S. Chen. Tech. Pap.-Soc. Plast. Eng., 1991, 37: 760

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Physical Properties and Associated Applications of Conducting Polymers. In: Conducting Polymers with Micro or Nanometer Structure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69323-9_3

Download citation

Publish with us

Policies and ethics