Skip to main content

On Sparsity Maximization in Tomographic Particle Image Reconstruction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5096))

Abstract

This work focuses on tomographic image reconstruction in experimental fluid mechanics (TomoPIV), a recently established 3D particle image velocimetry technique. Corresponding 2D image sequences (projections) and the 3D reconstruction via tomographical methods provides the basis for estimating turbulent flows and related flow patterns through image processing. TomoPIV employs undersampling to make the high-speed imaging process feasible, resulting in an ill-posed image reconstruction problem. We address the corresponding basic problems involved and point out promising optimization criteria for reconstruction based on sparsity maximization, that perform favorably in comparison to classical algebraic methods currently in use for TomoPIV.

This work has been supported by the German Research Foundation (DFG), grant Schn 457/10-1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björner, A.: Some matroid inequalities. Discrete Math 31, 101–103 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Censor, Y.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, Inc., New York (1997)

    MATH  Google Scholar 

  3. Chen, S.S., Donoho, D.l., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  4. Donoho, D.L., Elad, M.: Optimally sparse representation in general (non-orthogonal) dictionaries via ℓ1 minimization. Proc. Natl. Acad. of Sci. U.S.A. 100, 2197–2202 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Elad, M.: Sparse Representations Are Most Likely to Be the Sparsest Possible. EURASIP JASP, pp. 1–12 (2006)

    Google Scholar 

  6. Elsinga, G., Scarano, F., Wieneke, B., van Oudheusden, B.: Tomographic particle image velocimetry. Exp. Fluids 41, 933–947 (2006)

    Article  Google Scholar 

  7. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Log. Quart. 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  8. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29, 471–481 (1970)

    Article  Google Scholar 

  9. Koltracht, I., Lancaster, P.: Contraining Strategies for Linear Iterative Processes. IMA J. Num. Anal. 10, 55–567 (1990)

    Article  MathSciNet  Google Scholar 

  10. Mangasarian, O.L.: Machine Learning via Polyhedral Concave Minimization. In: Klaus Ritter, H., Fischer, B., Riedmüller, S. (eds.) Applied Mathematics and Parallel Computing – Festschrift, pp. 175–188. Physica-Verlag, Heidelberg (1996)

    Google Scholar 

  11. Mangasarian, O.L.: Minimum-support solutions of polyhedral concave programs. Optimization 45, 149–162 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Natarajan, K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tao, P.D., An, L.T.H.: A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem. SIAM J. Optim. 8, 476–505 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry, 2nd edn. Springer, Heidelberg (2001)

    Google Scholar 

  15. Scarano, F., Riethmüller, M.L.: Advances in iterative multigrid PIV image proccesing. Exp. Fluids 29, 51–60 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerhard Rigoll

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Petra, S., Schröder, A., Wieneke, B., Schnörr, C. (2008). On Sparsity Maximization in Tomographic Particle Image Reconstruction. In: Rigoll, G. (eds) Pattern Recognition. DAGM 2008. Lecture Notes in Computer Science, vol 5096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69321-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69321-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69320-8

  • Online ISBN: 978-3-540-69321-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics