# Chaos Suppression with Least Prior Knowledge: Continuous Time Feedback

• Ricardo Femat
• Gualberto Solis-Perales
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 378)

## Experimental Space in Frequency Domain

Firstly, we present the frequency spectrum as an alternative procedure for studying feedback effects onto chaotic systems. It is well known that continuous power spectrum is an important feature of chaotic systems. This fact can be used for distinguishing a chaotic system from time series. Although power spectrum is not definitive for identifying chaotic systems [1], power spectrum allows us to understand the effect of feedback onto chaotic systems in terms of the control parameters. In some sense, power spectrum can be seem as a dynamic bifurcation diagram [2], in fact, to study bifurcation of chaotic systems can be an important tool. To this end, there are two basic concepts: (i) Dynamics of a given nonlinear system can be approached by $$\dot{\chi}= f(\chi;\pi)$$, where $$f: \mathbb{R}^{n}\rightarrow {\mathbb R}^{n}$$ and $$\pi \in {\mathbb R}^{p}$$ is a set of parameters (which can be a constant or time functions). Thus, qualitative changes of the system behavior can be induced for certain values of the parameters $$\pi \in {\mathbb R}^{p}$$, i.e., it is possible that the nonlinear system displays chaos. (ii) such qualitative changes in dynamics of a nonlinear system can be observed due to parametric variations (i.e., bifurcation diagram). Hence, bifurcation diagrams are very important and can be also used as characterization procedure for chaotic systems.

## Keywords

Chaotic System Power Spectrum Density Experimental Space Levitation Force Control Command
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Gukenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, N.Y (1983)Google Scholar
2. 2.
Luna-Rivera, M., Femat, R.: A study in frequency of controlled chaotic systems (in Spanish). Rev. Mex. Fis. 46, 429 (2000)Google Scholar
3. 3.
Ho, M.C., Ko, J.Y., Yang, T.H., Chen, J.L.: A generic input-output analysis of zero-dispersion noninear resonance. Europhys. Letts. 48, 603 (1999)
4. 4.
Lima, R., Pattini, M.: Suppression of chaos by resonant parametric perturbation. Phys. Rev. A 41, 726 (1990)
5. 5.
Ott, E.: Chaos in dynamical systems. Cambridge University Press, Cambridge (1992)Google Scholar
6. 6.
Anischenko, V.S.: Dynamical chaos: models and experiments. World Scientific, Singapore (1995)Google Scholar
7. 7.
Piserchik, A.N., Corbalán, R.: Stochastic resonance in chaotic laser. Phys. Rev. E 58, 2697 (1998)
8. 8.
Aguirre, L.A., Billings, S.A.: Model reference control of regular and chaotic dynamics in the Duffing-Ueda oscillator. IEEE Trans. Circ. & Syst. I 41, 477 (1994)
9. 9.
Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421 (1992)
10. 10.
Wiesel, W.E.: Modal feedback control on chaotic trajectories. Phys. Rev. E. 49, 1990 (1994)
11. 11.
Nijmeijer, H., Berghuis, H.: On Lyapunov control of the Duffing equation. IEEE Trans. Circ. & Syst. I 42, 473 (1995)
12. 12.
Aguirre, L.A., Billings, S.A.: Closed-loop suppression of chaos in nonlinear driven oscillators. J. Nonlinear Sci. 5, 189 (1995)
13. 13.
Femat, R., Capistrán-Tobías, J., Solís-Perales, G.: Laplace domain controllers for chaos control. Phys. Lett. A 252, 27 (1999)
14. 14.
Wei, W.W.-S.: Time series analysis. Addison-Wesley, USA (1990)
15. 15.
Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963)
16. 16.
Haken, H.: Synergetics an introduction. Springer, Berlin (1983)
17. 17.
Arnold, V.I., Afraimovich, V.S., Il’yashenko, Y.S., Shl’nikov, L.P.: Bifurcation theory and catastrophe theory. Springer, Heidelberg (1999)
18. 18.
Halle, K.S., Wu, C.W., Itoh, M., Chua, L.O.: Spread spectrum communication through modulation of chaos. Int. J. of Bifur. and Chaos 3, 469 (1993)
19. 19.
Alvarez-Ramírez, J.: Nonlinear feedback for controlling the Lorenz equation. Phys. Rev. E 50, 2339 (1994)
20. 20.
Femat, R., Alvarez-Ramírez, J., González, J.: A strategy to control chaos in nonlinear driven oscillators with least prior knowledge. Phys. Lett. A 224, 271 (1997)
21. 21.
Mossayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Lett. A 161, 255 (1991)
22. 22.
Kozlov, A.K., Shalfeev, Chua, L.O.: Exact synchronization of mismatched chaotic systems. Int. J. of Bifur. and Chaos 6, 569 (1996)
23. 23.
Alvarez-Ramírez, J., Femat, R., González, J.: A time-delay coordinates strategy to control a class of chaotic oscillators. Phys. Lett. A 211, 41 (1996)
24. 24.
Wu, C.W., Yang, T., Chua, L.O.: On adaptive synchronization and control of nonlinear dynamical systems. Int. J. Bifur. and Chaos 6, 455 (1996)
25. 25.
di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time chaotic systems. Int. J. Bifur. and Chaos 6, 557 (1996)
26. 26.
Yu, X., Chen, G., Xia, Y., Song, Y., Cao, Z.: An invariant-manifold-based method for chaos control. IEEE Trans. on Circuits and Systems I. 48, 930 (2001)
27. 27.
Rulkov, N.F., Sushchik, M.M.: Robustness of synchronized chaotic oscillators. Int. Jour. of Bifur. and Chaos 7, 625 (1997)
28. 28.
29. 29.
Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Letts., 1196 (1990)Google Scholar
30. 30.
Roy, R., Murphy Jr., T.W., Maier, T.D., Gills, Z., Hunt, E.R.: Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68, 1259 (1992)
31. 31.
Christini, D.J., Collins, J.J.: Real-time model-independent control of low dimensional chaotic and nonchaotic systems. IEEE Trans. on Circuits and Systems I 44, 1027 (1997)
32. 32.
Femat, R., Alvarez-Ramírez, J.: Synchronization of a class of strictly-different oscillators. Phys. Lett. A 236, 307 (1997)
33. 33.
Coughanouwr, D.R., Koppel: Process systems analysis and control. McGraw-Hill, USA (1965)Google Scholar
34. 34.
D’Azzo, J.J., Houpis, C.H.: Linear control system analysis and design. McGraw-Hill, Tokyo (1975)
35. 35.
Alvarez-Ramírez, J., Femat, R., Barreiro, A.: A PI controller with dynamic estimation. Ind. Chem Eng. Res. 36, 3668 (1997)
36. 36.
Isidori, A.: Nonlinear control systems. Springer, Berlin (1989)
37. 37.
Nijmeijer, H.: Nonlinear dynamical control systems. Springer, N. Y (1990)
38. 38.
Doyle, J.C., Francis, B.A., Tannembaum, A.R.: Feedback control theory. MacMillan Publ. Company, N.Y (1992)Google Scholar
39. 39.
Morari, M., Zafirou, E.: Robust process control. Prentice-Hall, N.J (1989)Google Scholar
40. 40.
Kailath, T.: Linear systems. Prentice-Hall, N.J (1980)
41. 41.
42. 42.
Femat, R.: A control scheme for the motion of a magnet supported by type-II superconductor. Physica D 111, 347 (1998)
43. 43.
Puebla, H., Alvarez-Ramírez, J., Cervantes, I.: A simple tracking control for Chuás circuit. IEEE Trans. Circ. and Syst. I 50, 280 (2003)
44. 44.
Solis-Perales, G.: Sincronización de Marcha de Polípodos, McS. Thesis (in Spanish) (1999)Google Scholar
45. 45.
Chou, C.C., Lauk, M., Collins, J.J.: The dynamics of quasi-static posture control. Human Movement Sci. 18, 725 (1999)
46. 46.
Hall, K., Cristini, D.J., Tremblay, M., Collins, J.J., Glass, L., Billete, J.: Dynamic control of cardiac alternans. Phys. Rev. Lett. 78, 4518 (1997)
47. 47.
Femat, R., Alvarez-Ramírez, J., Zarazua, M.A.: Chaotic behavior from human biological signal. Phys. Lett. A 214, 175 (1996)
48. 48.
Pence, D.V., Beasley, D.E.: Chaos suppression in gas-solid fluidizatio. Chaos 8, 514 (1998)
49. 49.
Teel, A., Praly, L.: Tools for semiglobal stabilization by partial state and output feedback. SIAM J. of Control Opt. 33, 424 (1991)
50. 50.
Parmenada, P., Mena, C.H., Baier, G.: Resonant forcing of a silent Hodking-Huxley neuron. Phys. Rev. E 66, 047202-1 (2002)Google Scholar
51. 51.
Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fully linearizable systems. Int. J. of Control 56, 1007 (1992)
52. 52.
Sussman, H.J., Kokotovic, P.V.: The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Trans. on Automatic Control 36, 461 (1991)
53. 53.
Chua, L.O., Yang, T., Zhong, G.Q., Wu, C.W.: Adaptive synchronization of Chua oscillators. Int. J. Bifur. and Chaos 6, 189 (1996)
54. 54.
Torres, L.A.B., Aguirre, L.A.: Inductorless Chua’s circuit. Electronics Letts. 36, 1915 (2000)
55. 55.
Kothare, M.V., Campo, P.J., Morari, M., Nett, C.N.: A unified framework for study of anti-windupdesigns. Automatica 30, 1869 (1994)
56. 56.
Rönbäck, S.: Linear control of systems with actuators constraints, Ph. D. Dissertation, Luleå University of Technology, Sweden (1993)Google Scholar
57. 57.
Doyle III, F.J.: An anti-windup input-output linearization scheme for SISO systems. J. Proc. Control 9, 213 (1999)
58. 58.
Alvarez-Ramírez, J., Garrido, R., Femat, R.: Control of systems with friction. Phys. Rev. E 51, 6235 (1995)
59. 59.
Moon, F.C.: Chaotic vibration of a magnet near a superconductor. Phys. Lett. A 132, 249 (1988)
60. 60.
Hikihara, T., Moon, F.C.: Chaotic levitated motion of a magnet supported by superconductor. Phys. Lett. A 191, 279 (1994)
61. 61.
Chang, P.-Z., Moon, F.C., Hull, J.R., McCahly, T.M.: Levitation force and magnetic stiffness in bulk high-temperature superconductors. J. Appl. Phys. 67, 4358 (1990)
62. 62.
Goodall, R.M., Maclod, C.J.: Proc. of the 4TH IEEE Conference on Control Appl., Albany N.Y, p. 261 (1995)Google Scholar
63. 63.
Chen, Y.H., Chou, M.Y.: Continuous feedback approach for controlling chaos. Phys. Rev. E 50, 2331 (1994)
64. 64.
Chen, G., Dong, X.: On feedback control of chaotic continuous-time systems. IEEE Trans. Circuits and Systems 40, 591 (1993)
65. 65.
66. 66.
Dorato, P.: Robust control. IEEE Press, N.Y (1987)Google Scholar
67. 67.
Bryksin, V.V., Dorogovtsev, S.N.: Nonlinear diffussion of magnetic flux in type-II superconductors. JETP 77, 791 (1993)Google Scholar
68. 68.
Moon, F.C., Wenf, K.-C., Chang, P.-Z.: Dynamic magnetic forces in superconducting ceramics. J. Appl. Phys. 66, 5643 (1989)
69. 69.
Bowong, S., Moukam-Kakmeni, F.M.: Chaos control and duration time of a class of uncertain chaotic systems. Phys. Letts. A 316, 206 (2003)