Chaos Suppression with Least Prior Knowledge: Continuous Time Feedback

  • Ricardo Femat
  • Gualberto Solis-Perales
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 378)

Experimental Space in Frequency Domain

Firstly, we present the frequency spectrum as an alternative procedure for studying feedback effects onto chaotic systems. It is well known that continuous power spectrum is an important feature of chaotic systems. This fact can be used for distinguishing a chaotic system from time series. Although power spectrum is not definitive for identifying chaotic systems [1], power spectrum allows us to understand the effect of feedback onto chaotic systems in terms of the control parameters. In some sense, power spectrum can be seem as a dynamic bifurcation diagram [2], in fact, to study bifurcation of chaotic systems can be an important tool. To this end, there are two basic concepts: (i) Dynamics of a given nonlinear system can be approached by \(\dot{\chi}= f(\chi;\pi)\), where \(f: \mathbb{R}^{n}\rightarrow {\mathbb R}^{n}\) and \(\pi \in {\mathbb R}^{p}\) is a set of parameters (which can be a constant or time functions). Thus, qualitative changes of the system behavior can be induced for certain values of the parameters \(\pi \in {\mathbb R}^{p}\), i.e., it is possible that the nonlinear system displays chaos. (ii) such qualitative changes in dynamics of a nonlinear system can be observed due to parametric variations (i.e., bifurcation diagram). Hence, bifurcation diagrams are very important and can be also used as characterization procedure for chaotic systems.


Chaotic System Power Spectrum Density Experimental Space Levitation Force Control Command 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gukenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, N.Y (1983)Google Scholar
  2. 2.
    Luna-Rivera, M., Femat, R.: A study in frequency of controlled chaotic systems (in Spanish). Rev. Mex. Fis. 46, 429 (2000)Google Scholar
  3. 3.
    Ho, M.C., Ko, J.Y., Yang, T.H., Chen, J.L.: A generic input-output analysis of zero-dispersion noninear resonance. Europhys. Letts. 48, 603 (1999)CrossRefGoogle Scholar
  4. 4.
    Lima, R., Pattini, M.: Suppression of chaos by resonant parametric perturbation. Phys. Rev. A 41, 726 (1990)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ott, E.: Chaos in dynamical systems. Cambridge University Press, Cambridge (1992)Google Scholar
  6. 6.
    Anischenko, V.S.: Dynamical chaos: models and experiments. World Scientific, Singapore (1995)Google Scholar
  7. 7.
    Piserchik, A.N., Corbalán, R.: Stochastic resonance in chaotic laser. Phys. Rev. E 58, 2697 (1998)CrossRefGoogle Scholar
  8. 8.
    Aguirre, L.A., Billings, S.A.: Model reference control of regular and chaotic dynamics in the Duffing-Ueda oscillator. IEEE Trans. Circ. & Syst. I 41, 477 (1994)CrossRefGoogle Scholar
  9. 9.
    Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170, 421 (1992)CrossRefGoogle Scholar
  10. 10.
    Wiesel, W.E.: Modal feedback control on chaotic trajectories. Phys. Rev. E. 49, 1990 (1994)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Nijmeijer, H., Berghuis, H.: On Lyapunov control of the Duffing equation. IEEE Trans. Circ. & Syst. I 42, 473 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Aguirre, L.A., Billings, S.A.: Closed-loop suppression of chaos in nonlinear driven oscillators. J. Nonlinear Sci. 5, 189 (1995)zbMATHCrossRefGoogle Scholar
  13. 13.
    Femat, R., Capistrán-Tobías, J., Solís-Perales, G.: Laplace domain controllers for chaos control. Phys. Lett. A 252, 27 (1999)CrossRefGoogle Scholar
  14. 14.
    Wei, W.W.-S.: Time series analysis. Addison-Wesley, USA (1990)zbMATHGoogle Scholar
  15. 15.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130 (1963)CrossRefGoogle Scholar
  16. 16.
    Haken, H.: Synergetics an introduction. Springer, Berlin (1983)zbMATHGoogle Scholar
  17. 17.
    Arnold, V.I., Afraimovich, V.S., Il’yashenko, Y.S., Shl’nikov, L.P.: Bifurcation theory and catastrophe theory. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  18. 18.
    Halle, K.S., Wu, C.W., Itoh, M., Chua, L.O.: Spread spectrum communication through modulation of chaos. Int. J. of Bifur. and Chaos 3, 469 (1993)zbMATHCrossRefGoogle Scholar
  19. 19.
    Alvarez-Ramírez, J.: Nonlinear feedback for controlling the Lorenz equation. Phys. Rev. E 50, 2339 (1994)CrossRefGoogle Scholar
  20. 20.
    Femat, R., Alvarez-Ramírez, J., González, J.: A strategy to control chaos in nonlinear driven oscillators with least prior knowledge. Phys. Lett. A 224, 271 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Mossayebi, F., Qammar, H.K., Hartley, T.T.: Adaptive estimation and synchronization of chaotic systems. Phys. Lett. A 161, 255 (1991)CrossRefGoogle Scholar
  22. 22.
    Kozlov, A.K., Shalfeev, Chua, L.O.: Exact synchronization of mismatched chaotic systems. Int. J. of Bifur. and Chaos 6, 569 (1996)zbMATHCrossRefGoogle Scholar
  23. 23.
    Alvarez-Ramírez, J., Femat, R., González, J.: A time-delay coordinates strategy to control a class of chaotic oscillators. Phys. Lett. A 211, 41 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Wu, C.W., Yang, T., Chua, L.O.: On adaptive synchronization and control of nonlinear dynamical systems. Int. J. Bifur. and Chaos 6, 455 (1996)zbMATHCrossRefGoogle Scholar
  25. 25.
    di Bernardo, M.: An adaptive approach to the control and synchronization of continuous-time chaotic systems. Int. J. Bifur. and Chaos 6, 557 (1996)zbMATHCrossRefGoogle Scholar
  26. 26.
    Yu, X., Chen, G., Xia, Y., Song, Y., Cao, Z.: An invariant-manifold-based method for chaos control. IEEE Trans. on Circuits and Systems I. 48, 930 (2001)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Rulkov, N.F., Sushchik, M.M.: Robustness of synchronized chaotic oscillators. Int. Jour. of Bifur. and Chaos 7, 625 (1997)zbMATHCrossRefGoogle Scholar
  28. 28.
    Narendra, K.S., Annaswamy, A.M.: Stable adaptive systems. Prentice-Hall, N.J. (1989)Google Scholar
  29. 29.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Letts., 1196 (1990)Google Scholar
  30. 30.
    Roy, R., Murphy Jr., T.W., Maier, T.D., Gills, Z., Hunt, E.R.: Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. Phys. Rev. Lett. 68, 1259 (1992)CrossRefGoogle Scholar
  31. 31.
    Christini, D.J., Collins, J.J.: Real-time model-independent control of low dimensional chaotic and nonchaotic systems. IEEE Trans. on Circuits and Systems I 44, 1027 (1997)CrossRefGoogle Scholar
  32. 32.
    Femat, R., Alvarez-Ramírez, J.: Synchronization of a class of strictly-different oscillators. Phys. Lett. A 236, 307 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Coughanouwr, D.R., Koppel: Process systems analysis and control. McGraw-Hill, USA (1965)Google Scholar
  34. 34.
    D’Azzo, J.J., Houpis, C.H.: Linear control system analysis and design. McGraw-Hill, Tokyo (1975)zbMATHGoogle Scholar
  35. 35.
    Alvarez-Ramírez, J., Femat, R., Barreiro, A.: A PI controller with dynamic estimation. Ind. Chem Eng. Res. 36, 3668 (1997)CrossRefGoogle Scholar
  36. 36.
    Isidori, A.: Nonlinear control systems. Springer, Berlin (1989)zbMATHGoogle Scholar
  37. 37.
    Nijmeijer, H.: Nonlinear dynamical control systems. Springer, N. Y (1990)zbMATHGoogle Scholar
  38. 38.
    Doyle, J.C., Francis, B.A., Tannembaum, A.R.: Feedback control theory. MacMillan Publ. Company, N.Y (1992)Google Scholar
  39. 39.
    Morari, M., Zafirou, E.: Robust process control. Prentice-Hall, N.J (1989)Google Scholar
  40. 40.
    Kailath, T.: Linear systems. Prentice-Hall, N.J (1980)zbMATHGoogle Scholar
  41. 41.
    Dorf, R., Bishop, R.: Modern control systems. Addison-Wesley, Reading (1995)Google Scholar
  42. 42.
    Femat, R.: A control scheme for the motion of a magnet supported by type-II superconductor. Physica D 111, 347 (1998)zbMATHCrossRefGoogle Scholar
  43. 43.
    Puebla, H., Alvarez-Ramírez, J., Cervantes, I.: A simple tracking control for Chuás circuit. IEEE Trans. Circ. and Syst. I 50, 280 (2003)CrossRefGoogle Scholar
  44. 44.
    Solis-Perales, G.: Sincronización de Marcha de Polípodos, McS. Thesis (in Spanish) (1999)Google Scholar
  45. 45.
    Chou, C.C., Lauk, M., Collins, J.J.: The dynamics of quasi-static posture control. Human Movement Sci. 18, 725 (1999)CrossRefGoogle Scholar
  46. 46.
    Hall, K., Cristini, D.J., Tremblay, M., Collins, J.J., Glass, L., Billete, J.: Dynamic control of cardiac alternans. Phys. Rev. Lett. 78, 4518 (1997)CrossRefGoogle Scholar
  47. 47.
    Femat, R., Alvarez-Ramírez, J., Zarazua, M.A.: Chaotic behavior from human biological signal. Phys. Lett. A 214, 175 (1996)CrossRefGoogle Scholar
  48. 48.
    Pence, D.V., Beasley, D.E.: Chaos suppression in gas-solid fluidizatio. Chaos 8, 514 (1998)zbMATHCrossRefGoogle Scholar
  49. 49.
    Teel, A., Praly, L.: Tools for semiglobal stabilization by partial state and output feedback. SIAM J. of Control Opt. 33, 424 (1991)MathSciNetGoogle Scholar
  50. 50.
    Parmenada, P., Mena, C.H., Baier, G.: Resonant forcing of a silent Hodking-Huxley neuron. Phys. Rev. E 66, 047202-1 (2002)Google Scholar
  51. 51.
    Esfandiari, F., Khalil, H.K.: Output feedback stabilization of fully linearizable systems. Int. J. of Control 56, 1007 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Sussman, H.J., Kokotovic, P.V.: The peaking phenomenon and the global stabilization of nonlinear systems. IEEE Trans. on Automatic Control 36, 461 (1991)CrossRefGoogle Scholar
  53. 53.
    Chua, L.O., Yang, T., Zhong, G.Q., Wu, C.W.: Adaptive synchronization of Chua oscillators. Int. J. Bifur. and Chaos 6, 189 (1996)CrossRefGoogle Scholar
  54. 54.
    Torres, L.A.B., Aguirre, L.A.: Inductorless Chua’s circuit. Electronics Letts. 36, 1915 (2000)CrossRefGoogle Scholar
  55. 55.
    Kothare, M.V., Campo, P.J., Morari, M., Nett, C.N.: A unified framework for study of anti-windupdesigns. Automatica 30, 1869 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Rönbäck, S.: Linear control of systems with actuators constraints, Ph. D. Dissertation, Luleå University of Technology, Sweden (1993)Google Scholar
  57. 57.
    Doyle III, F.J.: An anti-windup input-output linearization scheme for SISO systems. J. Proc. Control 9, 213 (1999)CrossRefGoogle Scholar
  58. 58.
    Alvarez-Ramírez, J., Garrido, R., Femat, R.: Control of systems with friction. Phys. Rev. E 51, 6235 (1995)CrossRefGoogle Scholar
  59. 59.
    Moon, F.C.: Chaotic vibration of a magnet near a superconductor. Phys. Lett. A 132, 249 (1988)CrossRefGoogle Scholar
  60. 60.
    Hikihara, T., Moon, F.C.: Chaotic levitated motion of a magnet supported by superconductor. Phys. Lett. A 191, 279 (1994)CrossRefGoogle Scholar
  61. 61.
    Chang, P.-Z., Moon, F.C., Hull, J.R., McCahly, T.M.: Levitation force and magnetic stiffness in bulk high-temperature superconductors. J. Appl. Phys. 67, 4358 (1990)CrossRefGoogle Scholar
  62. 62.
    Goodall, R.M., Maclod, C.J.: Proc. of the 4TH IEEE Conference on Control Appl., Albany N.Y, p. 261 (1995)Google Scholar
  63. 63.
    Chen, Y.H., Chou, M.Y.: Continuous feedback approach for controlling chaos. Phys. Rev. E 50, 2331 (1994)CrossRefGoogle Scholar
  64. 64.
    Chen, G., Dong, X.: On feedback control of chaotic continuous-time systems. IEEE Trans. Circuits and Systems 40, 591 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Aström, K.J., Witterman, B.: Adaptive Control. Addison-Wesley, N.Y (1989)zbMATHGoogle Scholar
  66. 66.
    Dorato, P.: Robust control. IEEE Press, N.Y (1987)Google Scholar
  67. 67.
    Bryksin, V.V., Dorogovtsev, S.N.: Nonlinear diffussion of magnetic flux in type-II superconductors. JETP 77, 791 (1993)Google Scholar
  68. 68.
    Moon, F.C., Wenf, K.-C., Chang, P.-Z.: Dynamic magnetic forces in superconducting ceramics. J. Appl. Phys. 66, 5643 (1989)CrossRefGoogle Scholar
  69. 69.
    Bowong, S., Moukam-Kakmeni, F.M.: Chaos control and duration time of a class of uncertain chaotic systems. Phys. Letts. A 316, 206 (2003)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ricardo Femat
    • Gualberto Solis-Perales

      There are no affiliations available

      Personalised recommendations