Skip to main content

Organic Control of Traffic Lights

  • Conference paper
Book cover Autonomic and Trusted Computing (ATC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5060))

Included in the following conference series:

Abstract

In recent years, Autonomic and Organic Computing have become areas of active research in the computer science community. Both initiatives aim at handling the growing complexity in technical systems by creating systems with adaptation and self-optimisation capabilities. One application scenario for such “life-like” systems is the control of road traffic signals in urban areas. This paper presents an organic approach to traffic light control and analyses its performance by an experimental validation of the proposed architecture which demonstrates its benefits compared to classical traffic control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kephart, J.O., Chess, D.M.: The vision of Autonomic Computing. IEEE Computer 36(1), 41–50 (2003)

    Google Scholar 

  2. Schmeck, H.: Organic Computing – A new vision for distributed embedded systems. In: Proceedings of the 8th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2005), pp. 201–203 (2005)

    Google Scholar 

  3. Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner, F., Schmeck, H.: Organic Computing – Addressing complexity by controlled self-organization. In: Margaria, T., Philippou, A., Steffen, B. (eds.) Proceedings of the 2nd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2006), pp. 200–206 (2006)

    Google Scholar 

  4. Transportation Research Board Washington, D.C.: Highway Capacity Manual (2000)

    Google Scholar 

  5. Robertson, D.I., Bretherton, R.D.: Optimizing networks of traffic signals in real time – the SCOOT method. IEEE Transactions on Vehicular Technology 40(1), 11–15 (1991)

    Article  Google Scholar 

  6. Bretherton, R.D., Rai, G.I.: The use of SCOOT in low flow conditions. Traffic Engineering & Control 23(12), 574–576 (1982)

    Google Scholar 

  7. Sims, A.G., Dobinson, K.W.: The Sydney Coordinated Adaptive Traffic (SCAT) System – Philosophy and Benefits. Proceedings of the International Symposium on Traffic Control Systems 29(2), 19–41 (1980)

    Google Scholar 

  8. Friedrich, B.: Ein verkehrsadaptives Verfahren zur Steuerung von Lichtsignalanlagen. Veröffentlichung des Fachgebiets Verkehrstechnik und Verkehrsplanung. Technische Universität München (1999)

    Google Scholar 

  9. Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2(1), 1–18 (1994)

    Article  Google Scholar 

  10. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149–175 (1995)

    Article  Google Scholar 

  11. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 209–219. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Dam, H.H., Abbass, H.A., Lokan, C.: Be real! XCS with continuous-valued inputs. In: Rothlauf, F., et al. (eds.) Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation (GECCO 2005), pp. 85–87 (2005)

    Google Scholar 

  13. Stone, C., Bull, L.: For real! XCS with continuous-valued inputs. Evolutionary Computation 11(3), 299–336 (2003)

    Article  Google Scholar 

  14. Foy, M.D., Benekohal, R.F., Goldberg, D.E.: Signal timing determination using genetic algorithms. In: Transportation Research Record No. 1365, Transportation Research Board, pp. 108–115 (1992)

    Google Scholar 

  15. Stevanovic, A., Martin, P.T., Stevanovic, J.: VISGAOST: VISSIM-based genetic algorithm optimization of signal timings. In: Proceedings of the 86th Transportation Research Board Meeting (2007)

    Google Scholar 

  16. Sun, D., Benekohal, R.F., Waller, S.T.: Multi-objective traffic signal timing optimization using non-dominated sorting genetic algorithm. In: Proceedings of the IEE Intelligent Vehicles Symposium, pp. 198–203 (2003)

    Google Scholar 

  17. Branke, J., Goldate, P., Prothmann, H.: Actuated traffic signal optimization using evolutionary algorithms. In: Proceedings of the 6th European Congress and Exhibition on Intelligent Transport Systems and Services (ITS 2007) (2007)

    Google Scholar 

  18. Cao, Y.J., Ireson, N., Bull, L., Miles, R.: Distributed learning control of traffic signals. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 117–126. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Bull, L., Sha’Aban, J., Tomlinson, A., Addison, J.D., Heydecker, B.: Towards distributed adaptive control for road traffic junction signals using learning classifier systems. In: Bull, L. (ed.) Applications of Learning Classifier Systems, pp. 276–299. Springer, Heidelberg (2004)

    Google Scholar 

  20. Swiss Verkehrs-Systeme AG: VS-Plus webpage, http://www.vs-plus.de

  21. National Electrical Manufacturers Association: NEMA Standards Publication TS 2-2003 v02.06 – Traffic Controller Assemblies with NTCIP Requirements (2003)

    Google Scholar 

  22. Rochner, F., Prothmann, H., Branke, J., Müller-Schloer, C., Schmeck, H.: An organic architecture for traffic light controllers. In: Hochberger, C., Liskowsky, R. (eds.) Informatik 2006 – Informatik für Menschen. LNI, vol. P-93, pp. 120–127. Köllen Verlag (2006)

    Google Scholar 

  23. TSS Transport Simulation Systems: Aimsun webpage, http://www.aimsun.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Chunming Rong Martin Gilje Jaatun Frode Eika Sandnes Laurence T. Yang Jianhua Ma

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prothmann, H., Rochner, F., Tomforde, S., Branke, J., Müller-Schloer, C., Schmeck, H. (2008). Organic Control of Traffic Lights. In: Rong, C., Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds) Autonomic and Trusted Computing. ATC 2008. Lecture Notes in Computer Science, vol 5060. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69295-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69295-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69294-2

  • Online ISBN: 978-3-540-69295-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics