Advertisement

The Death Receptors

Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 23)

Abstract

In recent years apoptosis, also called programmed cell death, has been recognized to be the physiological way for a nucleated animal cell to die. Apoptosis takes care of unwanted, injured or virus-infected cells (Farber 1994; Collins 1995). Autoreactive T and B cells that are produced by the immune system by the millions every day are also eliminated by apoptosis. A large number of stimuli can trigger apoptosis. However, only the discovery of the existence of receptors that could trigger apoptosis convinced everyone that a certain substance would not just kill a cell due to its high toxicity but involve special apoptosis-inducing mechanisms. A number of receptors that were first shown to have other functions besides induction of apoptosis could kill cells. These receptors include the T cell receptor/CD3 complex (Smith et al. 1989; Takahashi et al. 1989; Newell et al. 1990), the B cell receptor (Ales-Martinez et al. 1992), CD2 (Merkenschlager and Fisher 1991), CD4 (Wadsworth et al. 1990) and the mouse antigen Thy-1 (Ucker et al. 1989).

Keywords

Death Receptor Death Domain African Swine Fever Virus Death Effector Domain Acidic SMase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu-Martin MT, Vidrich A, Lynch DH, Targan SR (1995) Divergent induction of apoptosis and IL-8 secretion in HT-29 cells in response to TNF-alpha and ligation of Fas antigen. J Immunol 155: 4147–4154PubMedGoogle Scholar
  2. Adachi M, Watanabe-Fukunaga R, Nagata S (1993) Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of 1pr mice. Proc Natl Acad Sci USA 90: 1756–1760PubMedCrossRefGoogle Scholar
  3. Adachi M, Suematsu S, Kondo T, Ogasawara J, Tanaka T, Yoshida N, Nagata S (1995) Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Genet 11: 294–300PubMedCrossRefGoogle Scholar
  4. Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schneider-Mergener J, Kronke M (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86: 937–947PubMedCrossRefGoogle Scholar
  5. Afonso CL, Neilan JG, Kutish GF, Rock DL (1996) An African swine fever virus Bd-2 homolog, 5-HL, suppresses apoptotic cell death. J Virol 70: 4858–4863PubMedGoogle Scholar
  6. Aggarwal BB, Singh S, LaPushin R, Totpal K (1995) Fas antigen signals proliferation of normal human diploid fibroblast and its mechanism is different from tumor necrosis factor receptor. FEBS Lett 364: 5–8PubMedCrossRefGoogle Scholar
  7. Ahmad M, Srinivasula SM, Wang L, Talanian RV, Litwack G, Fernandes-Alnemri T, Alnemri ES (1997) CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res 57: 615–619PubMedGoogle Scholar
  8. Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH (1993) Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178: 2231–2235PubMedCrossRefGoogle Scholar
  9. Alderson MR, Tough TW, Davis Smith T, Braddy S, Falk B, Schooley KA, Goodwin RG, Smith CA, Ramsdell F, Lynch DH (1995) Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med 181: 71–77PubMedCrossRefGoogle Scholar
  10. Ales Martinez JE, Scott DW, Phipps RP, Casnellie JE, Kroemer G, Martinez C, Pezzi L (1992) Cross-linking of surface IgM or IgD causes differential biological effects in spite of overlap in tyrosine (de)phosphorylation profile. Eur J Immunol 22: 845–850PubMedCrossRefGoogle Scholar
  11. Allison J, Georgiou HM, Strasser A, Vaux DL (1997) Transgenic expression of CD95 ligand on islet beta cells induces a granulocytic infiltration but does not confer immune privilege upon islet allografts. Proc Natl Acad Sci USA 94: 3943–3947PubMedCrossRefGoogle Scholar
  12. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87: 171PubMedCrossRefGoogle Scholar
  13. Baker MB, Altman NH, Podack ER, Levy RB (1996) The role of cell-mediated cytotoxicity in acute GVHD after MHC-matched allogeneic bone marrow transplantation in mice. J Exp Med 183: 2645–2656PubMedCrossRefGoogle Scholar
  14. Banner DW, D’Arcy A, Janes W, Gentz R, Schoenfeld HJ, Broger C, Loetscher H, Lesslauer W (1993) Crystal structure of the soluble human 55 kD TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 73: 431–445PubMedCrossRefGoogle Scholar
  15. Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immunol 25: 1–54PubMedCrossRefGoogle Scholar
  16. Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274: 782–784PubMedCrossRefGoogle Scholar
  17. Seidler DR, Tewari M, Friesen PD, Poirier G, Dixit VM (1995) The baculovirus p35 protein inhibits Fas-and tumor necrosis factor-induced apoptosis. J Biol Chem 270: 16526–16528CrossRefGoogle Scholar
  18. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC (1995) A role for CD95 ligand in preventing graft rejection. Nature 377: 630–632PubMedCrossRefGoogle Scholar
  19. Bertin J, Mendrysa SM, LaCount DJ, Gaur S, Krebs JF, Armstrong RC, Tomaselli KJ, Friesen PD (1996) Apoptotic suppression by baculovirus p35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-like protease. J Virol 70: 6251–6259PubMedGoogle Scholar
  20. Bertin J, Armstrong RC, Ottilie S, Martin DA, Wang Y, Banks S, Wang GH, Senkevich TG, Alnemri ES, Moss B, Lenardo MJ, Tomaselli KJ, Cohen JI (1997) Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc Natl Acad Sci USA 94: 1172–1176PubMedCrossRefGoogle Scholar
  21. Beutler B, van Huffel C (1994) Unraveling function in the TNF ligand and receptor families. Science 264: 667–8PubMedCrossRefGoogle Scholar
  22. Birnbaum MJ, Clem RJ, Miller LK (1994) An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol 68: 2521–2528PubMedGoogle Scholar
  23. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, Fitzner JN, Johnson RS, Paxton RJ, March CI, Cerretti DP (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385: 729–733PubMedCrossRefGoogle Scholar
  24. Bodmer JL, Burns K, Schneider P, Hofmann K, Steiner V, Thome M, Bornand T, Hahne M, Schroter M, Becker K, Wilson A, French LE, Browning JL, MacDonald HR, Tschopp 1 (1997) TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas (Apo-1/CD95). Immunity 6: 79–88PubMedGoogle Scholar
  25. Boise LH, Gonzalez Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) Bd-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608PubMedCrossRefGoogle Scholar
  26. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D (1995) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 270: 7795–7798PubMedCrossRefGoogle Scholar
  27. Boldin MP, Goncharov TM, Goltsev YV, Wallach D (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803–815PubMedCrossRefGoogle Scholar
  28. Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82: 405–414PubMedCrossRefGoogle Scholar
  29. Boulakia CA, Chen G, Ng FW, Teodoro JG, Branton PE, Nicholson DW, Poirier GG, Shore GC (1996) Bd-2 and adenovirus ElB 19kDa protein prevent E1A-induced processing of CPP32 and cleavage of poly(ADP-ribose) polymerase. Oncogene 12: 529–535PubMedGoogle Scholar
  30. Braun MY, Lowin B, French L, Acha Orbea H, Tschopp J (1996) Cytotoxic T cells deficient in both functional fas ligand and perforin show residual cytolytic activity yet lose their capacity to induce lethal acute graft-versus-host disease. J Exp Med 183: 657–661PubMedCrossRefGoogle Scholar
  31. Brockhaus M, Schoenfeld HJ, Schlaeger EJ, Hunziker W, Lesslauer W, Loetscher H (1990) Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies. Proc Natl Acad Sci USA 87: 3127–3131PubMedCrossRefGoogle Scholar
  32. Brooks MA, Ali AN, Turner PC, Moyer RW (1995) A rabbitpox virus serpin gene controls host range by inhibiting apoptosis in restrictive cells. J Virol 69: 7688–7698PubMedGoogle Scholar
  33. Brun A, Rivas C, Esteban M, Escribano JM, Alonso C (1996) African swine fever virus gene A179L, a viral homologue of bd-2, protects cells from programmed cell death. Virology 225: 227–230PubMedCrossRefGoogle Scholar
  34. Brunner T, Mogil RJ, LaFace D, Yoo NJ, Mahboubi A, Echeverri F, Martin SJ, Force WR, Lynch DH, Ware CF, et al. (1995) Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373: 441–444PubMedCrossRefGoogle Scholar
  35. Bump NJ, Hackett M, Hugunin M, Seshagiri S, Brady K, Chen P, Ferenz C, Franklin S, Ghayur T, Li P, et al. (1995) Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269: 1885–1888PubMedCrossRefGoogle Scholar
  36. Cahill MA, Peter ME, Kischkel FC, Chinnaiyan AM, Dixit VM, Krammer PH, Nordheim A (1996) CD95 (APO-1/Fas) induces activation of SAP kinases downstream of ICE-like proteases. Oncogene 13: 2087–2096PubMedGoogle Scholar
  37. Camerini D, Walz G, Loenen WA, Borst J, Seed B (1991) The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J Immunol 147: 3165–3169PubMedGoogle Scholar
  38. Chacon MR, Almazan F, Nogal ML, Vinuela E, Rodriguez JF (1995) The African swine fever virus IAP homolog is a late structural polypeptide. Virology 214: 670–674PubMedCrossRefGoogle Scholar
  39. Cheng EH, Levine B, Boise LH, Thompson CB, Hardwick JM (1996) Bax-independent inhibition of apoptosis by Bcl-XL. Nature 379: 554–556PubMedCrossRefGoogle Scholar
  40. Cheng EH, Nicholas J, Bellows DS, Hayward GS, Guo HG, Reitz MS, Hardwick JM (1997) A Bd-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Nati Acad Sci USA 94: 690–694CrossRefGoogle Scholar
  41. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505–512PubMedCrossRefGoogle Scholar
  42. Chinnaiyan AM, O’Rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J, Dixit VM (1996a) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274: 990–992PubMedCrossRefGoogle Scholar
  43. Chinnaiyan AM, Tepper CG, Seldin MF, O’Rourke K, Kischkel FC, Hellbardt S, Krammer PH, Peter ME, Dixit VM (1996b) FADD/MORTI is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 271: 4961–4965PubMedCrossRefGoogle Scholar
  44. Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275: 1122–1126PubMedCrossRefGoogle Scholar
  45. Chiocca S, Baker A, Cotten M (1997) Identification of a novel antiapoptotic protein, GAM-1, encoded by the CELO adenovirus. J Virol 71: 3168–77PubMedGoogle Scholar
  46. Cifone MG, Roncaioli P, De Maria R, Camarda G, Santoni A, Ruberti G, Testi R (1995) Multiple pathways originate at the Fas/APO-1 (CD95) receptor: sequential involvement of phosphatidylcholine-specific phospholipase C and acidic sphingomyelinase in the propagation of the apoptotic signal. EMBO J 14: 5859–5868PubMedGoogle Scholar
  47. Clem RJ, Miller LK (1993) Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol 67: 3730–3738PubMedGoogle Scholar
  48. Clem RJ, Miller LK (1994) Control of programmed cell death by the baculovirus genes p35 and iap. Mol Cell Biol 14: 5212–5222PubMedGoogle Scholar
  49. Clem RJ, Fechheimer M, Miller LK (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254: 1388–1390PubMedCrossRefGoogle Scholar
  50. Collins M (1995) Potential roles of apoptosis in viral pathogenesis. Am J Respir Crit Care Med 152: 520–524CrossRefGoogle Scholar
  51. Cory S (1995) Regulation of lymphocyte survival by the BCL-2 family. Annu Rev Immunol 13: 513–543PubMedCrossRefGoogle Scholar
  52. Crook NE, Clem RJ, Miller LK (1993) An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67: 2168–2174PubMedGoogle Scholar
  53. Dbaibo GS, Perry DK, Gamard CJ, Platt R, Poirier GG, Obeid LM, Hannun YA (1997) Cytokine response modifier A (CrmA) inhibits ceramide formation in response to tumor necrosis factor (TNF)-alpha: CrmA and Bd-2 target distinct components in the apoptotic pathway. J Exp Med 185: 481–490PubMedCrossRefGoogle Scholar
  54. Debatin KM, Fahrig Faissner A, Enenkel Stoodt S, Kreuz W, Benner A, Krammer PH (1994) High expression of APO-1 (CD95) on T lymphocytes from human immunodeficiency virus-1infected children. Blood 83: 3101–3103PubMedGoogle Scholar
  55. Debbas M, White E (1993) Wild-type p53 mediates apoptosis by El A, which is inhibited by E1B. Genes Dev 7: 546–554PubMedCrossRefGoogle Scholar
  56. Decoster E, Vanhaesebroeck B, Vandenabeele P, Grooten J, Fiers W (1995) Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor. J Biol Chem 270: 18473–18478PubMedCrossRefGoogle Scholar
  57. Degli-Esposti MA, Din WS, Cosman D, Smith CA, Goodwin RG (1997) AIR, a novel member of the TNF receptor family, is a strong inducer of apoptosis (submitted)Google Scholar
  58. Dembic Z, Loetscher H, Gubler U, Pan YC, Lahm HW, Gentz R, Brockhaus M, Lesslauer W (1990) Two human TNF receptors have similar extracellular, but distinct intracellular, domain sequences. Cytokine 2: 231–237PubMedCrossRefGoogle Scholar
  59. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037PubMedCrossRefGoogle Scholar
  60. Dhein J, Daniel PT, Trauth BC, Oehm A, Moller P, Krammer PH (1992) Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J Immunol 149: 3166–3173PubMedGoogle Scholar
  61. Dhein J, Walczak H, Baumler C, Debatin KM, Krammer PH (1995) Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373: 438–441PubMedCrossRefGoogle Scholar
  62. Digby MR, Kimpton WG, York JJ, Connick TE, Lowenthal JW (1996) ITA, a vertebrate homologue of IAP that is expressed in T lymphocytes. DNA Cell Biol 15: 981–988PubMedCrossRefGoogle Scholar
  63. Dobbelstein M, Shenk T (1996) Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. J Virol 70: 6479–6485PubMedGoogle Scholar
  64. Duan H, Orth K, Chinnaiyan AM, Poirier GG, Froelich CJ, He WW, Dixit VM (1996) ICE-LAP6, a novel member of the ICE/Ced-3 gene family, is activated by the cytotoxic T cell protease granzyme B. J Biol Chem 271: 16720–16724PubMedCrossRefGoogle Scholar
  65. Duan H, Dixit VM (1997) RAIDD is a new “death” adaptor molecule. Nature 385: 86–89PubMedCrossRefGoogle Scholar
  66. Duckett CS, Nava VE, Gedrich RW, Clem RJ, Van Dongen JL, Gilfillan MC, Shiels H, Hardwick JM, Thompson CB (1996) A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J 15: 2685–2694PubMedGoogle Scholar
  67. Durkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H (1992) Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 68: 421–427PubMedCrossRefGoogle Scholar
  68. Eck MJ, Sprang SR (1989) The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem 264: 17595–17605PubMedGoogle Scholar
  69. Eck MJ, Ultsch M, Rinderknecht E, de Vos AM, Sprang SR (1992) The structure of human lymphotoxin (tumor necrosis factor-beta) at 1.9-A resolution. J Biol Chem 267: 2119–2122Google Scholar
  70. EgSeino K, Kayagaki N, Okumura K, Yagita H (1997) Anti tumor effect of locally produced CD95 ligand. Nat Med 3: 165–170CrossRefGoogle Scholar
  71. Enari M, Hug H, Nagata S (1995) Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375: 78–81PubMedCrossRefGoogle Scholar
  72. Engelmann H, Holtmann H, Brakebusch C, Avni YS, Sarov I, Nophar Y, Hadas E, Leitner O, Wallach D (1990) Antibodies to a soluble form of a tumor necrosis factor ( TNF) receptor have TNF-like activity. J Biol Chem 265: 14497–14504PubMedGoogle Scholar
  73. Espevik T, Waage A (1988) The involvement of tumor necrosis factor-alpha ( TNF-alpha) in immunomodulation and in septic shock. Dev Biol Stand 69: 139–142PubMedGoogle Scholar
  74. Espevik T, Brockhaus M, Loetscher H, Nonstad U, Shalaby R (1990) Characterization of binding and biological effects of monoclonal antibodies against a human tumor necrosis factor receptor. J Exp Med 171: 415–426PubMedCrossRefGoogle Scholar
  75. Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y (1997) Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J 16: 2271–2281PubMedCrossRefGoogle Scholar
  76. Farber E (1994) Programmed cell death: necrosis versus apoptosis. Mod Pathol 7: 605–609PubMedGoogle Scholar
  77. Farrell HE, Vally H, Lynch DM, Fleming P, Shellam GR, Scalzo AA, Davis-Poynter NJ (1997) Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386: 510–514PubMedCrossRefGoogle Scholar
  78. Fernandes-Alnemri T, Takahashi A, Armstrong R, Krebs J, Fritz L, Tomaselli KJ, Wang L, Yu Z, Croce CM, Salveson G, et al. (1995) Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res 55: 6045–6052PubMedGoogle Scholar
  79. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, Fritz LC, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 93: 7464–7469PubMedCrossRefGoogle Scholar
  80. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY, Strober W, Lenardo MJ, Puck JM (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81: 935–946PubMedCrossRefGoogle Scholar
  81. Freiberg RA, Spencer DM, Choate KA, Duh HJ, Schreiber SL, Crabtree GR, Khavari PA (1997) Fas signal transduction triggers either proliferation or apoptosis in human fibroblasts. J Invest Dermatol 108: 215–219PubMedCrossRefGoogle Scholar
  82. Galle PR, Hofmann WJ, Walczak H, Schaller H, Otto G, Stremmel W, Krammer PH, Runkel L (1995) Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 182: 1223–1230PubMedCrossRefGoogle Scholar
  83. Gamen S, Marzo I, Anel A, Pineiro A, Naval J (1996) CPP32 inhibition prevents Fas-induced ceramide generation and apoptosis in human cells. FEBS Lett 390: 232–237PubMedCrossRefGoogle Scholar
  84. Garcia I, Miyazaki Y, Araki K, Araki M, Lucas R, Grau GE, Milon G, Belkaid Y, Montixi C, Lesslauer W, et al. (1995) Transgenic mice expressing high levels of soluble TNF-R1 fusion protein are protected from lethal septic shock and cerebral malaria, and are highly sensitive to Listeria monocytogenes and Leishmania major infections. Eur J Immunol 25: 2401–2407PubMedCrossRefGoogle Scholar
  85. Giordano C, Stassi G, De Maria R, Todaro M, Richiusa P, Papoff G, Ruberti G, Bagnasco M, Testi R, Galluzzo A (1997) Potential involvement of Fas and its ligand in the pathogenesis of Hashimoto’s thyroiditis. Science 275: 960–963PubMedGoogle Scholar
  86. Glauser MP (1996) The inflammatory cytokines. New developments in the pathophysiology and treatment of septic shock. Drugs 52 Suppl 2: 9–17CrossRefGoogle Scholar
  87. Goillot E, Raingeaud J, Ranger A, Tepper RI, Davis RJ, Harlow E, Sanchez I (1997) Mitogenactivated protein kinase-mediated Fas apoptotic signaling pathway. Proc Natl Acad Sci USA 94: 3302–3307PubMedCrossRefGoogle Scholar
  88. Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, et al. (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Celi 83: 793–802CrossRefGoogle Scholar
  89. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270: 1189–1192PubMedCrossRefGoogle Scholar
  90. Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA (1996) CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 5: 716CrossRefGoogle Scholar
  91. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Okamura H, Nakanishi K, Kurimoto M, Tanimoto T, Flavell RA, Sato V, Harding MW, Livingston DJ, Su MS (1997) Activation of interferon-gamma inducing factor mediated by interleukin-Ibeta converting enzyme. Science 275: 206–209PubMedCrossRefGoogle Scholar
  92. Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, Cerottini J, Tschopp J (1996) Melanoma cell expression of Fas (Apo-1/ CD95) ligand: implications for tumor immune escape. Science 274: 1363–1366PubMedCrossRefGoogle Scholar
  93. Haimovitz Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RN (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180: 525–535PubMedCrossRefGoogle Scholar
  94. Hashimoto S, Ishii A, Yonehara S (1991) The E1B oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. Int Immunol 3: 343–351PubMedCrossRefGoogle Scholar
  95. Hay BA, Wassarman DA, Rubin GM (1995) Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell 83: 1253–1262PubMedCrossRefGoogle Scholar
  96. Hayward M, Fiedler-Nagy C (1987) Mechanisms of bone loss: rheumatoid arthritis, periodontal disease and osteoporosis. Agents Actions 22: 251–254PubMedCrossRefGoogle Scholar
  97. Heinkelein M, Pilz S, Jassoy C (1996) Inhibition of CD95 ( Fas/Apol)-mediated apoptosis by vaccinia virus WR. Clin Exp Immunol 103: 8–14PubMedCrossRefGoogle Scholar
  98. Hershberger PA, LaCount DJ, Friesen PD (1994) The apoptotic suppressor p35 is required early during baculovirus replication and is targeted to the cytosol of infected cells. J Virol 68: 3467–3477PubMedGoogle Scholar
  99. Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7: 2135–2148PubMedCrossRefGoogle Scholar
  100. Hiramatsu N, Hayashi N, Katayama K, Mochizuki K, Kawanishi Y, Kasahara A, Fusamoto H, Kamada T (1994) Immunohistochemical detection of Fas antigen in liver tissue of patients with chronic hepatitis C. Hepatology 19: 1354–1359PubMedCrossRefGoogle Scholar
  101. Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81: 495–504PubMedCrossRefGoogle Scholar
  102. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (1996a) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4: 387–396PubMedCrossRefGoogle Scholar
  103. Hsu H, Shu HB, Pan MG, Goeddel DV (1996b) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84: 299–308PubMedCrossRefGoogle Scholar
  104. Hsu H, Solovyev I, Colombero A, Elliott R, Kelley M, Boyle WJ (1997) ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J Biol Chem 272: 13471–13474PubMedCrossRefGoogle Scholar
  105. Hsu YT, Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bd-2 family. J Biol Chem 272: 13829–13834PubMedCrossRefGoogle Scholar
  106. Hu S, Vincenz C, Buller M, Dixit VM (1997) A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-l-induced apoptosis. J Biol Chem 272: 9621–9624PubMedCrossRefGoogle Scholar
  107. Huang B, Eberstadt M, Olejniczak ET, Meadows RP, Fesik SW (1996) NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature 384: 638–641PubMedCrossRefGoogle Scholar
  108. Huang DC, Cory S, Strasser A (1997) Bd-2, Bcl-XL and adenovirus protein E1B19kD are functionally equivalent in their ability to inhibit cell death. Oncogene 14: 405–414PubMedCrossRefGoogle Scholar
  109. Ichijo H, Nishida E, Irie K, Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K, Gotoh Y (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 275: 90–94PubMedCrossRefGoogle Scholar
  110. Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268: 10932–10937PubMedGoogle Scholar
  111. Itoh N, Tsujimoto Y, Nagata S (1993) Effect of bd-2 on Fas antigen-mediated cell death. J Immunol 151: 621–627PubMedGoogle Scholar
  112. Jäättelä M, Mouritzen H, Elling F, Bastholm L (1996) A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol 156: 1166–1173PubMedGoogle Scholar
  113. Jaffrezou JP, Levade T, Bettaieb A, Andrieu N, Bezombes C, Maestre N, Vermeersch S, Rousse A, Laurent G (1996) Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J 15: 2417–2424PubMedGoogle Scholar
  114. Jarvis WD, Fornari FA Jr, Browning JL, Gewirtz DA, Kolesnick RN, Grant S (1994) Attenuation of ceramide-induced apoptosis by diglyceride in human myeloid leukemia cells. J Biol Chem 269: 31685–31692PubMedGoogle Scholar
  115. Jones EY, Stuart DI, Walker NP (1992) Crystal structure of TNF. Immunol Ser 56: 93–127PubMedGoogle Scholar
  116. Ju ST, Panka DJ, Cui H, Ettinger R, el Khatib M, Sherr DH, Stanger BZ, Marshak Rothstein A (1995) Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373: 444–448PubMedCrossRefGoogle Scholar
  117. Juo P, Kuo CJ, Reynolds SE, Konz RF, Raingeaud J, Davis RJ, Biemann HP, Blenis J (1997) Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED3 family proteases. Mol Cell Biol 17: 24–35PubMedGoogle Scholar
  118. Karpusas M, Hsu YM, Wang JH, Thompson J, Lederman S, Chess L, Thomas D (1995) 2 A crystal structure of an extracellular fragment of human CD40 ligand. Structure 3: 1031–1039Google Scholar
  119. Katsikis PD, Wunderlich ES, Smith CA, Herzenberg LA (1995) Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals. J Exp Med 181: 2029–2036PubMedCrossRefGoogle Scholar
  120. Kawanishi M (1997) Epstein-Barr virus BHRF1 protein protects intestine 407 epithelial cells from apoptosis induced by tumor necrosis factor alpha and anti-Fas antibody. J Virol 71: 3319–3322PubMedGoogle Scholar
  121. Kettle S, Alcami A, Khanna A, Ehret R, Jassoy C, Smith GL (1997) Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-lbeta-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-lbeta-induced fever. J Gen Virol 78: 677–685PubMedGoogle Scholar
  122. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex ( DISC) with the receptor. EMBO J 14: 5579–5588PubMedGoogle Scholar
  123. Kitson J, Raven T, Jiang YP, Goeddel DV, Giles KM, Pun KT, Grinham CJ, Brown R, Farrow SN (1996) A death-domain-containing receptor that mediates apoptosis. Nature 384: 372–375PubMedCrossRefGoogle Scholar
  124. Kluck RM, Bossy Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bd-2 regulation of apoptosis. Science 275: 1132–1136PubMedCrossRefGoogle Scholar
  125. Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornberry NA, Peterson EP, Salvesen G (1994) Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 269: 19331–19337PubMedGoogle Scholar
  126. Korner H, Sedgwick JD (1996) Tumour necrosis factor and lymphotoxin: molecular aspects and role in tissue-specific autoimmunity. Immunol Cell Biol 74: 465–472PubMedCrossRefGoogle Scholar
  127. Krikos A, Laherty CD, Dixit VM (1992) Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J Biol Chem 267: 17971–17976PubMedGoogle Scholar
  128. Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267: 2000–2003PubMedCrossRefGoogle Scholar
  129. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372PubMedCrossRefGoogle Scholar
  130. Kull FC Jr, Besterman JM (1990) Drug-induced alterations of tumor necrosis factor-mediated cytotoxicity: discrimination of early versus late stage action. J Cell Biochem 42: 1–12PubMedCrossRefGoogle Scholar
  131. Kwon BS, Weissman SM (1989) cDNA sequences of two inducible T cell genes. Proc Natl Acad Sci USA 86: 1963–1968Google Scholar
  132. Kwon BS, Tan KB, Ni J, Lee KO, Kim KK, Kim YJ, Wang S, Gentz R, Yu GL, Harrop J, Lyn SD, Silverman C, Porter TG, Truneh A, Young PR (1997) A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J Biol Chem 272: 14272–14276PubMedCrossRefGoogle Scholar
  133. Lahti JM, Xiang J, Heath LS, Campana D, Kidd VJ (1995) PITSLRE protein kinase activity is associated with apoptosis. Mol Cell Biol 15: 1–11PubMedGoogle Scholar
  134. Latinis KM, Koretzky GA (1996) Fas ligation induces apoptosis and Jun kinase activation independently of CD45 and Lck in human T cells. Blood 87: 871–875PubMedGoogle Scholar
  135. Lau HT, Yu M, Fontana A, Stoeckert CJJ (1996) Prevention of islet allograft rejection with engineered myoblasts expressing FasL in mice. Science 273: 109–112PubMedCrossRefGoogle Scholar
  136. Leist M, Gantner F, Bohlinger I, Germann PG, Tiegs G, Wendel A (1994) Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. J Immunol 153: 1778–1788PubMedGoogle Scholar
  137. Leithauser F, Dhein J, Mechtersheimer G, Koretz K, Bruderlein S, Henne C, Schmidt A, Debatin KM, Krammer PH, Moller P (1993) Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest 69: 415–429PubMedGoogle Scholar
  138. Lenczowski JM, Dominguez L, Eder AM, King LB, Zacharchuk CM, Ashwell JD (1997) Lack of a role for Jun kinase and AP-1 in Fas-induced apoptosis. Mol Cell Biol 17: 170–181PubMedGoogle Scholar
  139. Lerch RA, Friesen PD (1993) The 35-kilodalton protein gene (p35) of Autographa californica nuclear polyhedrosis virus and the neomycin resistance gene provide dominant selection of recombinant baculoviruses. Nucleic Acids Res 21: 1753–1760PubMedCrossRefGoogle Scholar
  140. Li CJ, Friedman DJ, Wang C, Metelev V, Pardee AB (1995a) Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268: 429–431PubMedCrossRefGoogle Scholar
  141. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C, McDowell J, Paskind M, Rodman L, Salfeld J, et al. (1995b) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80: 401–411PubMedCrossRefGoogle Scholar
  142. Lippke JA, Gu Y, Sarnecki C, Caron PR, Su MS (1996) Identification and characterization of CPP32/Mch2 homolog 1, a novel cysteine protease similar to CPP32. J Biol Chem 271: 1825–1828PubMedCrossRefGoogle Scholar
  143. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton Horvat G, Farahani R, McLean M, Ikeda JE, MacKenzie A, Korneluk RG (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379: 349–353PubMedCrossRefGoogle Scholar
  144. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157PubMedCrossRefGoogle Scholar
  145. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase 3 to trigger DNA fragmentation during apoptosis. Cell 89: 175–184PubMedCrossRefGoogle Scholar
  146. Liu ZG, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87: 565–576PubMedCrossRefGoogle Scholar
  147. Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W (1990) Molecular cloning and expression of the human 55 kD tumor necrosis factor receptor. Cell 61: 351–359PubMedCrossRefGoogle Scholar
  148. Los M, Van de Craen M, Penning LC, Schenk H, Westendorp M, Baeuerle PA, Droge W, Krammer PH, Fiers W, Schulze Osthoff K (1995) Requirement of an ICE/CED-3 protease for Fas/APO1-mediated apoptosis. Nature 375: 81–83PubMedCrossRefGoogle Scholar
  149. Maini RN (1996) The role of cytokines in rheumatoid arthritis. The Croonian Lecture 1995. J R Coll Phys Lond 30: 344–351Google Scholar
  150. Mallett S, Fossum S, Barclay AN (1990) Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes–a molecule related to nerve growth factor receptor. EMBO J 9: 1063–1068PubMedGoogle Scholar
  151. Mandai M, Maggirwar SB, Sharma N, Kaufmann SH, Sun SC, Kumar R (1996) Bd-2 prevents CD95 (Fas/APO-1)-induced degradation of lamin B and poly(ADP-ribose) polymerase and restores the NF-kappaB signaling pathway. J Biol Chem 271: 30354–30359CrossRefGoogle Scholar
  152. Mapara MY, Bargou R, Zugck C, Dohner H, Ustaoglu F, Jonker RR, Krammer PH, Dorken B (1993) APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bd-2 oncogene expression. Eur J Immunol 23: 702–708PubMedCrossRefGoogle Scholar
  153. Mariani SM, Matiba B, Baumler C, Krammer PH (1995) Regulation of cell surface APO-1/Fas (CD95) ligand expression by metalloproteases. Eur J Immunol 25: 2303–2307PubMedCrossRefGoogle Scholar
  154. Mariani SM, Matiba B, Armandola EA, Krammer PH (1997) Interleukin 1 beta-converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells. J Cell Biol 137: 221–229PubMedCrossRefGoogle Scholar
  155. Marsters SA, Pitti RM, Donahue CJ, Ruppert S, Bauer KD, Ashkenazi A (1996a) Activation of apoptosis by Apo-2 ligand is independent of FADD but blocked by CrmA. Curr Biol 6: 750–752PubMedCrossRefGoogle Scholar
  156. Marsters SA, Sheridan JP, Donahue CJ, Pitti RM, Gray CL, Goddard AD, Bauer KD, Ashkenazi A (1996b) Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol 6: 1669–1676PubMedCrossRefGoogle Scholar
  157. McCloskey TW, Oyaizu N, Kaplan M, Pahwa S (1995) Expression of the Fas antigen in patients infected with human immunodeficiency virus. Cytometry 22: 111–114PubMedCrossRefGoogle Scholar
  158. McCurrach ME, Connor TM, Knudson CM, Korsmeyer SJ, Lowe SW (1997) Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc Natl Acad Sci USA 94: 2345–2349PubMedCrossRefGoogle Scholar
  159. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME (1997a) FLICE is activated by association with the CD95 death-inducing signaling complex ( DISC ). EMBO J 16: 2794–2804PubMedCrossRefGoogle Scholar
  160. Medema JP, Toes REM, Scaffidi C, Zheng TS, Flavell RA, Melief CJM, Peter ME, Offringa R, Krammer PH (1997b) FLICE activation by granzyme B during CTL mediated apoptosis. Eur J Immunol 27: 3492–3498PubMedCrossRefGoogle Scholar
  161. Medema JP, Scaffidi C, Krammer PH, Peter ME (1998) Bcl-x, acts downstream of caspase-8 activation by the death-inducing signaling complex. J Biol Chem 273: 3388–3393PubMedCrossRefGoogle Scholar
  162. Meier R, Rouse J, Cuenda A, Nebreda AR, Cohen P (1996) Cellular stresses and cytokines activate multiple mitogen-activated-protein kinase homologues in PC12 and KB cells. Eur J Biochem 236: 796–805PubMedCrossRefGoogle Scholar
  163. Memon SA, Moreno MB, Petrak D, Zacharchuk CM (1995) Bd-2 blocks glucocorticoid-but not Fas-or activation-induced apoptosis in a T cell hybridoma. J Immunol 155: 4644–4652PubMedGoogle Scholar
  164. Merkenschlager M, Fisher AG (1991) CD45 isoform switching precedes the activation-driven death of human thymocytes by apoptosis. Int Immunol 3: 1–7PubMedCrossRefGoogle Scholar
  165. Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB (1997) Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385: 353–357PubMedCrossRefGoogle Scholar
  166. Mogil RJ, Radvanyi L, Gonzalez Quintial R, Miller R, Mills G, Theofilopoulos AN, Green DR (1995) Fas (CD95) participates in peripheral T cell deletion and associated apoptosis in vivo. Int Immunol 7: 1451–1458PubMedCrossRefGoogle Scholar
  167. Monney L, Otter I, Olivier R, Ravn U, Mirzasaleh H, Fellay I, Poirier GG, Borner C (1996) Bd-2 overexpression blocks activation of the death protease CPP32/Yama/apopain. Biochem Biophys Res Commun 221: 340–345PubMedCrossRefGoogle Scholar
  168. Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87: 427–436PubMedCrossRefGoogle Scholar
  169. Moreno MB, Memon SA, Zacharchuk CM (1996) Apoptosis signaling pathways in normal T cells: differential activity of Bd-2 and IL-lbeta-converting enzyme family protease inhibitors on glucocorticoid-and Fas-mediated cytotoxicity. J Immunol 157: 3845–3849PubMedGoogle Scholar
  170. Moss ML, Jin SL, Milla ME, Burkhart W, Carter HL, Chen WJ, Clay WC, Didsbury JR, Hassler D, Hoffman CR, Kost TA, Lambert MH, Leesnitzer MA, McCauley P, McGeehan G, Mitchell J, Moyer M, Pahel G, Rocque W, Overton LK, Schoenen F, Seaton T, Su JL, Warner J, Becherer JD, et al. (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385: 733–736PubMedCrossRefGoogle Scholar
  171. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381: 335–341PubMedCrossRefGoogle Scholar
  172. Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, Scaffidi C, Bretz JD, Zhang M, Gentz R, Mann M, Krammer PH, Peter ME, Dixit VM (1996) FLICE, a novel FADDhomologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817–827PubMedCrossRefGoogle Scholar
  173. Muzio M, Salvesen GS, Dixit VM (1997) FLICE induced apoptosis in a cell-free system. Cleavage of caspase zymogens. J Biol Chem 272: 2952–2956PubMedCrossRefGoogle Scholar
  174. Nagata S, Golstein P (1995) The Fas death factor. Science 267: 1449–1456PubMedCrossRefGoogle Scholar
  175. Natoli G, Costanzo A, Ianni A, Templeton DJ, Woodgett JR, Balsano C, Levrero M (1997) Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway. Science 275: 200–203PubMedCrossRefGoogle Scholar
  176. Neilan JG, Lu Z, Afonso CL, Kutish GF, Sussman MD, Rock DL (1993) An African swine fever virus gene with similarity to the proto-oncogene bc1–2 and the Epstein-Barr virus gene BHRF1. J Virol 67: 4391–4394PubMedGoogle Scholar
  177. Newell MK, Haughn LJ, Maroun CR, Julius MH (1990) Death of mature T cells by separate ligation of CD4 and the T-cell receptor for antigen. Nature 347: 286–289PubMedCrossRefGoogle Scholar
  178. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, et al. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37–43PubMedCrossRefGoogle Scholar
  179. Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ, Green DR, Kratzke RA (1997) Human lung carcinomas express Fas ligand. Cancer Res 57: 1007–1012PubMedGoogle Scholar
  180. Nishina H, Fischer KD, Radvanyi L, Shahinian A, Hakem R, Rubie EA, Bernstein A, Mak TW, Woodgett JR, Penninger JM (1997) Stress-signalling kinase Sek1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature 385: 350–353PubMedCrossRefGoogle Scholar
  181. Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R, Migliorati G, Riccardi C (1997) A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci USA 94: 6216–6221PubMedCrossRefGoogle Scholar
  182. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F (1996) The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 184: 1075–1082PubMedCrossRefGoogle Scholar
  183. Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C, Li Weber M, Richards S, Dhein J, Trauth BC, et al. (1992) Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem 267: 10709–10715PubMedGoogle Scholar
  184. Ogasawara J, Watanabe-Fukunaga R, Adach M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of tie anti-Fas antibody in mice. Nature 364: 806–809PubMedCrossRefGoogle Scholar
  185. Okura T, Gong L, Kamitani T, Wada T, Okura I, Wei CF, Chang HM, Yeh ET (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157: 4277–4281PubMedGoogle Scholar
  186. Oltvai ZN, Korsmeyer SJ (1994) Checkpoints of dueling dimers foil death wishes. Cell 79: 189–192PubMedCrossRefGoogle Scholar
  187. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bd-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619PubMedCrossRefGoogle Scholar
  188. Opipari AW Jr, Hu HM, Yabkowitz R, Dixit VM (1992) The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 267: 12424–12427PubMedGoogle Scholar
  189. Orth K, O’Rourke K, Salvesen GS, Dixit VM (1996) Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases. J Biol Chem 271: 20977–20980PubMedCrossRefGoogle Scholar
  190. Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276: 111–113PubMedCrossRefGoogle Scholar
  191. Park A, Baichwal VR (1996) Systematic mutational analysis of the death domain of the tumor necrosis factor receptor 1-associated protein TRADD. J Biol Chem 271: 9858–9862PubMedCrossRefGoogle Scholar
  192. Pasparakis M, Alexopoulou L, Episkopou V, Kollias G (1996) Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med 184: 1397–1411PubMedCrossRefGoogle Scholar
  193. Perez C, Albert I, DeFay K, Zachariades N, Gooding L, Kriegler M (1990) A nonsecretable cell surface mutant of tumor necrosis factor ( TNF) kills by cell-to-cell contact. Cell 63: 251–258PubMedCrossRefGoogle Scholar
  194. Peter ME, Kischkel FC, Scheuerpflug CG, Medema JP, Debatin KM, Krammer PH (1997a) Resistance of cultured peripheral T cells towards activation-induced cell death involves a lack of recruitment of FLICE (MACH/caspase 8) to the CD95 death-inducing signaling complex. Eur J Immunol 27: 1207–1212PubMedCrossRefGoogle Scholar
  195. Peter ME, Medema JP, Krammer PH (1997b) Does the Caenorhabditis elegans protein CED-4 contain a region of homology to the mammalian death effector domain? Cell Death Differ 4: 523–525PubMedCrossRefGoogle Scholar
  196. Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A, Wiegmann K, Ohashi PS, Kronke M, Mak TW (1993) Mice deficient for the 55kD tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73: 457–467PubMedCrossRefGoogle Scholar
  197. Pickup DJ (1994) Poxviral modifiers of cytokine responses to infection. Infect Agents Dis 3: 116–127PubMedGoogle Scholar
  198. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271: 12687–12690PubMedCrossRefGoogle Scholar
  199. Ponton A, Clement MV, Stamenkovic I (1996) The CD95 (APO-1/Fas) receptor activates NFkappaB independently of its cytotoxic function. J Biol Chem 271: 8991–8995PubMedCrossRefGoogle Scholar
  200. Porteu F, Hieblot C (1994) Tumor necrosis factor induces a selective shedding of its p75 receptor from human neutrophils. J Biol Chem 269: 2834–2840PubMedGoogle Scholar
  201. Radeke MJ, Misko TP, Hsu C, Herzenberg LA, Shooter EM (1987) Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325: 593–597PubMedCrossRefGoogle Scholar
  202. Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E (1992) The adenovirus EIA proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bd-2 proteins. Proc Natl Acad Sci USA 89: 7742–7746PubMedCrossRefGoogle Scholar
  203. Rao L, Perez D, White E (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135: 1441–1455PubMedCrossRefGoogle Scholar
  204. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 69: 597–604PubMedCrossRefGoogle Scholar
  205. Reyburn HT, Mandelboim O, Vales Gomez M, Davis DM, Pazmany L, Strominger JL (1997) The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 386: 514–517PubMedCrossRefGoogle Scholar
  206. Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, de Villartay JP (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268: 1347–1349PubMedCrossRefGoogle Scholar
  207. Rothe J, Lesslauer W, Lotscher H, Lang Y, Koebel P, Kontgen F, Althage A, Zinkernagel R, Steinmetz M, Bluethmann H (1993) Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature 364: 798–802PubMedCrossRefGoogle Scholar
  208. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83: 1243–1252PubMedCrossRefGoogle Scholar
  209. Santana P, Pena LA, Haimovitz Friedman A, Martin S, Green D, McLoughlin M, Cordon Cardo C, Schuchman EH, Fuks Z, Kolesnick R (1996) Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation-induced apoptosis. Cell 86: 189–99PubMedCrossRefGoogle Scholar
  210. Sato T, Irie S, Kitada S, Reed JC (1995) FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 268: 411–415PubMedCrossRefGoogle Scholar
  211. Scaffidi C, Medema JP, Krammer PH, Peter ME (1997) FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem 272: 26953–26958PubMedCrossRefGoogle Scholar
  212. Schall TJ, Lewis M, Koller KJ, Lee A, Rice GC, Wong GH, Gatanaga T, Granger GA, Lentz R, Raab H, et al. (1990) Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61: 361–370PubMedCrossRefGoogle Scholar
  213. Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC (1997) Channel formation by antiapoptotic protein Bd-2. Proc Natl Acad Sci USA 94: 5113–5118PubMedCrossRefGoogle Scholar
  214. Schievella AR, Chen JH, Graham JR, Lin LL (1997) MADD, a novel death domain protein that interacts with the type 1 tumor necrosis factor receptor and activates mitogen-activated protein kinase. J Biol Chem 272: 12069–12075PubMedCrossRefGoogle Scholar
  215. Schlegel J, Peters I, Orrenius S, Miller DK, Thornberry NA, Yamin TT, Nicholson DW (1996) CPP32/apopain is a key interleukin 1 beta converting enzyme-like protease involved in Fas-mediated apoptosis. J Biol Chem 271: 1841–1844PubMedCrossRefGoogle Scholar
  216. Schreiber M, Sedger L, McFadden G (1997) Distinct domains of M-T2, the myxoma virus tumor necrosis factor ( TNF) receptor homolog, mediate extracellular TNF binding and intracellular apoptosis inhibition. J Virol 71: 2171–2181PubMedGoogle Scholar
  217. Screaton GR, Xu XN, Olsen AL, Cowper AE, Tan R, McMichael AJ, Bell JI (1997) LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci USA 94: 4615–4619PubMedCrossRefGoogle Scholar
  218. Seino K, Kayagaki N, Okumura K, Yagita H (1997) Antitumor effect of locally produced CD95 ligand. Nat Med 3: 165–170PubMedCrossRefGoogle Scholar
  219. Selawry HP, Cameron DF (1993) Sertoli cell-enriched fractions in successful islet cell transplantation. Cell Transplant 2: 123–129PubMedGoogle Scholar
  220. Shimamoto Y, Chen RL, Bollon A, Chang A, Khan A (1988) Monoclonal antibodies against human recombinant tumor necrosis factor: prevention of endotoxic shock. Immunol Lett 17: 311–317PubMedCrossRefGoogle Scholar
  221. Shiraki K, Tsuji N, Shioda T, Isselbacher KJ, Takahashi H (1997) Expression of fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci USA 94: 6420–6425PubMedCrossRefGoogle Scholar
  222. Sieg S, Yildirim Z, Smith D, Kayagaki N, Yagita H, Huang Y, Kaplan D (1996) Herpes simplex virus type 2 inhibition of Fas ligand expression. J Virol 70: 8747–8751PubMedGoogle Scholar
  223. Sillence DJ, Allan D (1997) Evidence against an early signalling role for ceramide in Fas-mediated apoptosis. Biochem J 324: 29–32PubMedGoogle Scholar
  224. Simonian PL, Grillot DA, Andrews DW, Leber B, Nunez G (1996) Bax homodimerization is not required for Bax to accelerate chemotherapy-induced cell death. J Biol Chem 271: 32073–32077PubMedCrossRefGoogle Scholar
  225. Singer GG, Abbas AK (1994) The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1: 365–371PubMedCrossRefGoogle Scholar
  226. Smith CA, Williams GT, Kingston R, Jenkinson EJ, Owen JJ (1989) Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 337: 181–184PubMedCrossRefGoogle Scholar
  227. Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, Dower SK, Cosman D, Goodwin RG (1990) A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248: 1019–1023PubMedCrossRefGoogle Scholar
  228. Smith DJ, McGuire MJ, Tocci MJ, Thiele DL (1997) IL-1 beta convertase ( ICE) does not play a requisite role in apoptosis induced in T lymphoblasts by Fas-dependent or Fas-independent CTL effector mechanisms. J Immunol 158: 163–170PubMedGoogle Scholar
  229. Song HY, Rothe M, Goeddel DV (1996) The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA 93: 6721–6725PubMedCrossRefGoogle Scholar
  230. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Litwack G, Alnemri ES (1996a) Molecular ordering of the Fas-apoptotic pathway: the Fas/APO-1 protease Mch5 is a CrmA-inhibitable protease that activates multiple Ced-3/ICE-like cysteine proteases. Proc Natl Acad Sci USA 93: 14486–14491PubMedCrossRefGoogle Scholar
  231. Srinivasula SM, Fernandes-Alnemri T, Zangrilli J, Robertson N, Armstrong RC, Wang L, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996b) The Ced-3/interleukin lbeta converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates for the apoptotic mediator CPP32. J Biol Chem 271: 27099–27106PubMedCrossRefGoogle Scholar
  232. Stamenkovic I, Clark EA, Seed B (1989) A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J 8: 1403–1410PubMedGoogle Scholar
  233. Stanger BZ, Leder P, Lee TH, Kim E, Seed B (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513–523PubMedCrossRefGoogle Scholar
  234. Stokkers PC, Camoglio L, van Deventer SJ (1995) Tumor necrosis factor (TNF) in inflammatory bowel disease: gene polymorphisms, animal models, and potential for anti-TNF therapy. J Inflamm 47: 97–103PubMedGoogle Scholar
  235. Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA (1997) CD95 ligand ( FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99: 396–402PubMedCrossRefGoogle Scholar
  236. Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178PubMedCrossRefGoogle Scholar
  237. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bd-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184: 1331–1341PubMedCrossRefGoogle Scholar
  238. Sweeney EA, Sakakura C, Shirahama T, Masamune A, Ohta H, Hakomori S, Igarashi Y (1996) Sphingosine and its methylated derivative N,N-dimethylsphingosine ( DMS) induce apoptosis in a variety of human cancer cell lines. Int J Cancer 66: 358–366PubMedCrossRefGoogle Scholar
  239. Szawlowski PW, Hanke T, Randall RE (1993) Sequence homology between HIV-1 gp120 and the apoptosis mediating protein Fas. AIDS 7: 1018PubMedCrossRefGoogle Scholar
  240. Takahashi S, Maecker HT, Levy R (1989) DNA fragmentation and cell death mediated by T cell antigen receptor/CD3 complex on a leukemia T cell line. Eur J Immunol 19: 1911–1919PubMedCrossRefGoogle Scholar
  241. Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S (1994) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76: 969–976PubMedCrossRefGoogle Scholar
  242. Tarodi B, Subramanian T, Chinnadurai G (1994) Epstein-Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection. Virology 201: 404–407PubMedCrossRefGoogle Scholar
  243. Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA Jr, Goeddel DV (1991) The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci USA 88: 9292–9296PubMedCrossRefGoogle Scholar
  244. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV (1993a) A novel domain within the 55 kD TNF receptor signals cell death. Cell 74: 845–853PubMedCrossRefGoogle Scholar
  245. Tartaglia LA, Pennica D, Goeddel DV (19936) Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem 268: 18542–18548Google Scholar
  246. Tewari M, Dixit VM (1995a) Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J Biol Chem 270: 3255–3260PubMedCrossRefGoogle Scholar
  247. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995b) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmAinhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81: 801–809PubMedCrossRefGoogle Scholar
  248. Tewari M, Telford WG, Miller RA, Dixit VM (1995c) CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis. J Biol Chem 270: 22705–22708PubMedCrossRefGoogle Scholar
  249. Thoma B, Grell M, Pfizenmaier K, Scheurich P (1990) Identification of a 60-kD tumor necrosis factor ( TNF) receptor as the major signal transducing component in TNF responses. J Exp Med 172: 1019–1023PubMedCrossRefGoogle Scholar
  250. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, Mattmann C, Burns K, Bodmer JL, Schroter M, Scaffidi C, Krammer PH, Peter ME, Tschopp J (1997) Viral FLICEinhibitory proteins ( FLIPs) prevent apoptosis induced by death receptors. Nature 386: 517–521CrossRefGoogle Scholar
  251. Ting AT, Pimentel Muinos FX, Seed B (1996) RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J 15: 6189–6196PubMedGoogle Scholar
  252. Tracey KJ, Cerami A (1993) Tumor necrosis factor, other cytokines and disease. Annu Rev Cell Biol 9: 317–343PubMedCrossRefGoogle Scholar
  253. Trost LC, Lemasters JJ (1994) A cytotoxicity assay for tumor necrosis factor employing a multiwell fluorescence scanner. Anal Biochem 220: 149–153PubMedCrossRefGoogle Scholar
  254. Ucker DS, Ashwell JD, Nickas G (1989) Activation-driven T cell death. I. Requirements for de novo transcription and translation and association with genome fragmentation. J Immunol 143: 3461–3469PubMedGoogle Scholar
  255. Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-alphainduced apoptosis by NF-kappaB. Science 274: 787–789PubMedCrossRefGoogle Scholar
  256. Vandenabeele P, Declercq W, Vanhaesebroeck B, Grooten J, Fiers W (1995) Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells. J Immunol 154: 2904–2913PubMedGoogle Scholar
  257. Vandevoorde V, Haegeman G, Fiers W (1997) Induced expression of trimerized intracellular domains of the human tumor necrosis factor (TNF) p55 receptor elicits TNF effects. J Cell Biol 137: 1627–1638PubMedCrossRefGoogle Scholar
  258. Venable ME, Lee JY, Smyth MJ, Bielawska A, Obeid LM (1995) Role of ceramide in cellular senescence. J Biol Chem 270: 30701–30708PubMedCrossRefGoogle Scholar
  259. Vincenz C, Dixit VM (1997) Fas-associated death domain protein interleukin-lbeta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95- and p55-mediated death signaling. J Biol Chem 272: 6578–6583PubMedCrossRefGoogle Scholar
  260. Wadsworth S, Yui K, Siegel RM, Tenenholz DE, Hirsch JA, Greene MI (1990) Origin and selection of peripheral CD4–CD8-T cells bearing alpha/beta T cell antigen receptors in autoimmune gld mice. Eur J Immunol 20: 723–730PubMedCrossRefGoogle Scholar
  261. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (1997) TRAIL-R2: a novel apoptosismediating receptor for TRAIL. EMBO J 16: 5386–5397PubMedCrossRefGoogle Scholar
  262. Wang CY, Mayo MW, Baldwin ASJ (1996a) TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274: 784–787PubMedCrossRefGoogle Scholar
  263. Wang HG, Rapp UR, Reed JC (1996b) Bd-2 targets the protein kinase Raf-1 to mitochondria. Cell 87: 629–638PubMedCrossRefGoogle Scholar
  264. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S (1992a) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356: 314–317PubMedCrossRefGoogle Scholar
  265. Watanabe-Fukunaga R, Brannan CI, Itoh N, Yonehara S, Copeland NG, Jenkins NA, Nagata S (1992b) The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol 148: 1274–1279PubMedGoogle Scholar
  266. Watts JD, Gu M, Polverino AJ, Patterson SD, Aebersold R (1997) Fas-induced apoptosis of T cells occurs independently of ceramide generation. Proc Natl Acad Sci USA 94: 7292–7296PubMedCrossRefGoogle Scholar
  267. Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375: 497–500PubMedCrossRefGoogle Scholar
  268. White E, Sabbatini P, Debbas M, Wold WS, Kusher DI, Gooding LR (1995) The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha. Mol Cell Biol 12: 2570–2580Google Scholar
  269. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673–682PubMedCrossRefGoogle Scholar
  270. Wilson DJ, Fortner KA, Lynch DH, Mattingly RR, Macara IG, Posada JA, Budd RC (1996) JNK, but not MAPK, activation is associated with Fas-mediated apoptosis in human T cells. Eur J Immunol 26: 989–994PubMedCrossRefGoogle Scholar
  271. Wong GH, Tartaglia LA, Lee MS, Goeddel DV (1992) Antiviral activity of tumor necrosis factor is signaled through the 55-kDa type I TNF receptor. J Immunol 149: 3350–3353PubMedGoogle Scholar
  272. Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D, FitzGerald MJ, Rothstein TL, Sherr DH, Sonenshein GE (1996) Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. EMBO J 15: 4682–4690PubMedGoogle Scholar
  273. Xue D, Horvitz HR (1995) Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377: 248–251PubMedCrossRefGoogle Scholar
  274. Yanagisawa J, Takahashi M, Kanki H, Yano-Yanagisawa H, Tazunoki T, Sawa E, Nishitoba T, Kamishohara M, Kobayashi E, Kataoka S, Sato T (1997) The molecular interaction of Fas and FAP-1. A tripeptide blocker of human Fas interaction with FAP-1 promotes Fas-induced apoptosis. J Biol Chem 272: 8539–8545PubMedCrossRefGoogle Scholar
  275. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997a) Prevention of apoptosis by Bd-2: release of cytochrome c from mitochondria blocked. Science 275: 1129–1132PubMedCrossRefGoogle Scholar
  276. Yang X, Khoravi Far R, Chang HY, Baltimore D (1997b) Daxx, a novel Fas-binding protein that activates JNK and apoptosis. Cell 89: 1067–1076PubMedCrossRefGoogle Scholar
  277. Zagury JF, Cantalloube H, Achour A, Cho YY, Fall L, Lachgar A, Chams V, Astgen A, Biou D, Picard O, et al. (1993) Striking similarities between HIV-1 Env protein and the apoptosis mediating cell surface antigen Fas. Role in the pathogenesis of AIDS. Biomed Pharmacother 47: 331–335PubMedCrossRefGoogle Scholar
  278. Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon L, Kyriakis J, Liu FF, Woodgett JR (1996) The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 6: 606–613PubMedCrossRefGoogle Scholar
  279. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3–3 not BCL–X(L). Cell 87: 619 – 628PubMedCrossRefGoogle Scholar
  280. Zhang X, Brunner T, Carter L, Dutton RW, Rogers P, Bradley L, Sato T, Reed JC, Green D, Swain SL (1997) Unequal death in T helper cell (Th)1 and Th2 effectors: Thl, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J Exp Med 185: 1837–1849PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  1. 1.Tumor Immunology ProgramGerman Cancer Research CenterHeidelbergGermany
  2. 2.Department of Immunohematology and BloodbankUniversity Hospital LeidenLeidenThe Netherlands

Personalised recommendations