Skip to main content

The ART of Cosmological Simulations

  • Conference paper

Abstract

We describe the basic ideas of MPI parallelization of the N-body Adaptive Refinement Tree (ART) code. The code uses self-adaptive domain decomposition where boundaries of the domains (parallelepipeds) constantly move—with many degrees of freedom—in the search of the minimum of CPU time. The actual CPU time spent by each MPI task on previous time-step is used to adjust boundaries for the next time-step. For a typical decomposition of 53 domains, the number of possible changes in boundaries is 384≈1040. We describe two algorithms of finding minimum of CPU time for configurations with a large number of domains. Each MPI task in our code solves the N-body problem where the large-scale distribution of matter outside of the boundaries of a domain is represented by relatively few temporary large particles created by other domains. At the beginning of a zero-level time-step, domains create and exchange large particles. Then each domain advances all its particles for many small time-steps. At the end of the large step, the domains decide where to place new boundaries and re-distribute particles. The scheme requires little communications between processors and is very efficient for large cosmological simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Ceverino, A. Klypin, arXiv:0710.1666 (2007)

  2. P. Colín, A. Klypin, O. Valenzuela, S. Gottlöber, Astrophys. J. 612, 50 (2004)

    Article  Google Scholar 

  3. P. Colín, O. Valenzuela, A. Klypin, Astrophys. J. 644, 687 (2006)

    Article  Google Scholar 

  4. M. Crocce, R. Scoccimarro, Phys. Rev. D 77, 023533 (2008)

    Article  Google Scholar 

  5. N.Y. Gnedin, A.V. Kravtsov, H.-W. Chen, Astrophys. J. 672, 765 (2008)

    Article  Google Scholar 

  6. S. Gottlöber, E.L. Łokas, A. Klypin, Y. Hoffman, Mon. Not. R. Astron. Soc. 344, 715 (2003)

    Article  Google Scholar 

  7. R.W. Hockney, J.W. Eastwood, csup.book (1988)

    Google Scholar 

  8. A.M. Khokhlov, J. Comput. Phys. 143, 519 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Klypin, S. Gottlöber, A.V. Kravtsov, A.M. Khokhlov, Astrophys. J. 516, 530 (1999)

    Article  Google Scholar 

  10. A.V. Kravtsov, A.A. Klypin, A.M. Khokhlov, Astrophys. J. Suppl. 111, 73 (1997)

    Article  Google Scholar 

  11. A.V. Kravtsov, PhD thesis, New Mexico State University, 1999

    Google Scholar 

  12. A.V. Kravtsov, A. Klypin, Y. Hoffman, Astrophys. J. 571, 563 (2002)

    Article  Google Scholar 

  13. A.V. Kravtsov, D. Nagai, A.A. Vikhlinin, Astrophys. J. 625, 588 (2005)

    Article  Google Scholar 

  14. E.L. Łokas, F. Prada, R. Wojtak, M. Moles, S. Gottlöber, Mon. Not. R. Astron. Soc. 366, L26 (2006)

    Article  Google Scholar 

  15. E.L. Łokas, R. Wojtak, S. Gottlöber, G.A. Mamon, F. Prada, Mon. Not. R. Astron. Soc. 367, 1463 (2006)

    Article  Google Scholar 

  16. D. Nagai, A.V. Kravtsov, A. Vikhlinin, Astrophys. J. 668, 1 (2007)

    Article  Google Scholar 

  17. F. Prada, A.A. Klypin, E. Simonneau, J. Betancort-Rijo, S. Patiri, S. Gottlöber, Astrophys. J. 645, 1001 (2006)

    Article  Google Scholar 

  18. D.H. Rudd, A.R. Zentner, A.V. Kravtsov, Astrophys. J. 672, 19 (2008)

    Article  Google Scholar 

  19. J.L. Tinker, A.V. Kravtsov, A. Klypin, K. Abazajian, M.S. Warren, G. Yepes, S. Gottlöber, D.E. Holz, arXiv:0803.2706 [astro-ph] (2008)

  20. O. Valenzuela, A. Klypin, Mon. Not. R. Astron. Soc. 345, 406 (2003)

    Article  Google Scholar 

  21. R. Wojtak, E.L. Łokas, G.A. Mamon, S. Gottlöber, F. Prada, M. Moles, Astron. Astrophys. 466, 437 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Gottlöber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottlöber, S., Klypin, A. (2009). The ART of Cosmological Simulations. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_3

Download citation

Publish with us

Policies and ethics