Skip to main content

Oxidative Dehydrogenation of Simple Molecules over RuO2(110): Density Functional Theory Calculations

  • Conference paper

Abstract

We use density functional theory to investigate two industrially important oxidation reactions on the RuO2(110) catalyst: NH3 to NO and HCl to Cl2. The calculations bring insight to the high reactivity and selectivity on this substrate, and they support the recent experimental results. In the case of NH3 oxidation the desorption of NO is the rate-determining step of the reaction, due to the high adsorption energy of NO. The oxidation of HCl is characterized by gradual chlorination of the top-most layer of the surface of the catalyst.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ertl, H. Knözinger, J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis (Wiley, New York, 1997)

    Google Scholar 

  2. M. Knapp, D. Crihan, A.P. Seitsonen, H. Over, Hydrogen transfer reaction on the surface of an oxide catalyst. J. Am. Chem. Soc. 127, 3236–3237 (2005). doi:10.1021/ja043355h

    Article  Google Scholar 

  3. L. Hannevold, O. Nilsen, A. Kjekshus, H. Fjellvag, Reconstruction of platinum-rhodium catalysts during oxidation of ammonia. Appl. Catal. A 284, 163–176 (2005). doi:10.1016/j.apcata.2005.01.033

    Article  Google Scholar 

  4. J. Perez-Ramirez, B. Vigeland, Perovskite membranes in ammonia oxidation: Towards process intensification in nitric acid manufacture. Angew. Chem. Int. Ed. 44, 1112–1115 (2005). doi:10.1002/anie.200462024

    Article  Google Scholar 

  5. Y. Wang, K. Jacobi, W.-D. Schöne, G. Ertl, Catalytic oxidation of ammonia on RuO2(110) surfaces: Mechanism and selectivity. J. Phys. Chem. B 109, 7883–7893 (2005). doi:10.1021/jp045735v

    Article  Google Scholar 

  6. K. Iwanaga, K. Seki, T. Hibi, K. Issoh, T. Suzuta, M. Nakada, Y. Mori, T. Abe, The development of improved hydrogen chloride oxidation process. Sumitomo Kagaku 2004-I, 1–11 (2004)

    Google Scholar 

  7. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964). doi:10.1103/PhysRev.136.B864

    Article  MathSciNet  Google Scholar 

  8. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). doi:10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  9. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). doi:10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  10. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  11. R. Car, M. Parrinello, Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985). doi:10.1103/PhysRevLett.55.2471

    Article  Google Scholar 

  12. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). doi:10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  13. http://www.quantum-espresso.org/

  14. H. Jónsson, G. Mills, K.W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, ed. by B.J. Berne, G. Ciccotti, D.F. Coker (World Scientific, Singapore, 1998), p. 385

    Google Scholar 

  15. A.P. Seitsonen, H. Over, High Performance Computing in Science and Engineering, Munich 2002 (Springer, Berlin, 2003)

    Google Scholar 

  16. A.P. Seitsonen, D. Crihan, M. Knapp, A. Resta, E. Lundgren, J.N. Andersen, H. Over, to be published

    Google Scholar 

  17. M. Baerns, R. Imbihl, V.A. Kondratenko, R. Kraehnert, W.K. Offermans, R.A. van Santen, A. Scheibe, Bridging the pressure and material gap in the catalytic ammonia oxidation: Structural and catalytic properties of different platinum catalysts. J. Catal. 232, 226–238 (2005). doi:10.1016/j.jcat.2005.03.002

    Article  Google Scholar 

  18. J.R. Rostrup-Nielsen, J.H.B. Hansen, CO2-reforming of methane over transition metals. J. Catal. 144, 38–49 (1993). doi:10.1006/jcat.1993.1312

    Article  Google Scholar 

  19. A. Lobo, H. Conrad, Interaction of H2O with the RuO2(110) surface studied by HREELS and TDS. Surf. Sci. 523, 279 (2003). doi:10.1016/S0039-6028(02)02459-7

    Article  Google Scholar 

  20. D. Crihan, M. Knapp, S. Zweidinger, E. Lundgren, C.J. Westrate, J.N. Andersen, A.P. Seitsonen, H. Over, Stable deacon process for HCl oxidation over RuO2. Angew. Chem. Int. Ed. 47, 2131–2134 (2008). doi:10.1002/anie.200705124

    Article  Google Scholar 

  21. Y.B. He, M. Knapp, E. Lundgren, H. Over, Ru(0001) model catalyst under oxidising and reducing reaction conditions: In-situ high-pressure surface X-ray diffraction study. J. Phys. Chem. B 109, 21825–21830 (2005). doi:10.1021/jp0538520

    Article  Google Scholar 

  22. R. Blume, M. Hävecker, S. Zafeiratos, D. Teschner, E. Vass, P. Schnörch, A. Knop-Gericke, R. Schlögl, S. Lizzit, P. Dudin, A. Barinov, M. Kiskinova, Monitoring in situ catalytically active states of Ru catalysts for different methanol oxidation pathways. Phys. Chem. Chem. Phys. 9, 3648–3657 (2007). doi:10.1039/b700986k

    Article  Google Scholar 

  23. H. Over, A.P. Seitsonen, M. Knapp, E. Lundgren, M. Schmid, P. Varga, Visualization of atomic processes on ruthenium dioxide using scanning tunneling microscopy. Chem. Phys. Chem. 5, 67–174 (2004). doi:10.1002/cphc.200300833

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari P. Seitsonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seitsonen, A.P., Over, H. (2009). Oxidative Dehydrogenation of Simple Molecules over RuO2(110): Density Functional Theory Calculations. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering, Garching/Munich 2007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69182-2_15

Download citation

Publish with us

Policies and ethics