Skip to main content

Stochastic Volatility Estimation Using Markov Chain Simulation

  • Chapter
Applied Quantitative Finance

Stochastic volatility (SV) models are workhorses for the modelling and prediction of time-varying volatility on financial markets and are essential tools in risk management, asset pricing and asset allocation. In financial mathematics and financial economics, stochastic volatility is typically modeled in a continuous-time setting which is advantageous for derivative pricing and portfolio optimization. Nevertheless, since data is typically only observable at discrete points in time, in empirical applications, discrete-time formulations of SV models are equally important.

The main objective of this chapter is to present the most important specifications of discrete-time SV models, to illustrate the major principles of Markov Chain Monte Carlo (MCMC) based statistical inference, and to show how to implement these techniques to estimate SV models. In this context, we provide a hands-on approach which is easily extended in various directions. Moreover, we will illustrate empirical results based on different SV specifications using returns on stock indices and foreign exchange rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Andersen, T. G., Bollerslev, T., Diebold, F.X., and Labys, P. 2003. Modeling and Fore-casting Realized Volatility, Econometrica 71: 579-625.

    Article  MATH  MathSciNet  Google Scholar 

  • Arteche, J. 2004. Gaussian semiparametric estimation in long memory in stochastic volatil-ity and signal plus noise models, Journal of Econometrics 119: 131-154.

    Article  MathSciNet  Google Scholar 

  • Baillie, R. T. 1996. Long memory processes and fractional integration in econometrics, Journal of Econometrics 73: 5-59.

    Article  MATH  MathSciNet  Google Scholar 

  • Bates, D. 2000. Post-’87 Crash fears in S&P 500 futures options, Journal of Econometrics 9: 69-107.

    MathSciNet  Google Scholar 

  • Beran, J. 1994. Statistics for Long-Memory Processes, Chapman and Hall, Boca Raton.

    MATH  Google Scholar 

  • Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society Series B 36: 192-236.

    MATH  MathSciNet  Google Scholar 

  • Black, F. 1976. Studies of stock price volatility changes, Proceedings of the 1976 Meetings of the American Statistical Association, Business and Economical Statistics Section 177-181.

    Google Scholar 

  • Bollerslev, T. and Mikkelsen, H. O. 1996. Modeling and pricing long memory in stock market volatility, Journal of Econometrics 73: 151-184.

    Article  MATH  MathSciNet  Google Scholar 

  • Breidt, F. J., Carto, N., and de Lima, P. 1998. The detection and estimation of long memory in stochastic volatility models, Journal of Econometrics 83: 325-348.

    Article  MATH  MathSciNet  Google Scholar 

  • Brockwell, A. E. 2005. Likelihood-based analysis of a class generalized long-memory time series models, Journal of Time Series Analysis 28: 386-407.

    Article  MathSciNet  Google Scholar 

  • Bauwens, L., Lubrano, M., and Richard, J. F. 1999. Bayesan Inference in Dynamic Econo-metric Models, Oxford University Press & Sons, New York.

    Google Scholar 

  • Campbell, J. Y. and Hentschel, L. 1992. No news is good news: An asymmetric model of changing volatility in stock returns, Journal of Financial Economics 31: 281-318.

    Article  Google Scholar 

  • Chib, S., Nardari, F., and Shephard, N. 2002. Markov Chain Monte Carlo methods for stochastic volatility models, Journal of Econometrics 108: 281-316.

    Article  MATH  MathSciNet  Google Scholar 

  • Cowles, M. K. and Carlin, B. P. 1996. Markov Chain Monte Carlo convergence diagnostics: A comparative review, Journal of the American Statistical Association 91: 883-905.

    Article  MATH  MathSciNet  Google Scholar 

  • Clark, P.K. 1973. A subordinated stochastic process model with finite variance for specu-lative prices,”, Econometrica 41: 135-156.

    Article  MATH  MathSciNet  Google Scholar 

  • Danielsson, J. 1994. Stochastic volatility in asset prices: Estimation with simulated max-imum likelihood, Journal of Econometrics 64: 375-400.

    Article  MATH  Google Scholar 

  • Duffie, D., Pan, J., and Singleton, K. 2000. Transform analysis and asset pricing for affine jump-diffusions, Econometrica 68: 1343-1376.

    Article  MATH  MathSciNet  Google Scholar 

  • Engle, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica 50: 987-1007.

    Article  MATH  MathSciNet  Google Scholar 

  • Eraker, B., Johannes, M., and Polson, N. 2003. The impact of jumps in volatility and returns, Journal of Finance 58: 1269-1300.

    Article  Google Scholar 

  • French, K. R., Schwert, G. W., and Stambaugh, R. F. 1987. Expected stock returns and volatility, Journal of Financial Economics 19: 3-29.

    Article  Google Scholar 

  • Frieze, A., Kannan, R., and Polson N. 1994. Sampling from log-concave distributions, Annals of Applied Probability 4: 812-834.

    Article  MATH  MathSciNet  Google Scholar 

  • Gallant, A.R., Hsie, D., and Tauchen G. 1997. Estimation of stochastic volatility models with diagnostics, Journal of Econometrics 81: 159-192.

    Article  MATH  Google Scholar 

  • Geman, S. and Geman D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721-741.

    Article  MATH  Google Scholar 

  • Geweke, J. 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, in J. M. Bernardo, J. O. Berger, A. P. Dawid, A. F. M. Smith (ed.), Bayesian Statistics 4, Oxford University Press, Amsterdam.

    Google Scholar 

  • Ghysels, E., Harvey, A. C., and Renault E. 1996. Stochastic volatility, in G. S. Maddala and C. R. Rao (ed.), Handbook of Statistics 14, Statistical Methods in Finance, North-Holland, Amsterdam.

    Google Scholar 

  • Granger, C. W. and Joyeux, R. 1980. An introduction to long-memory time series models and fractional differencing, Journal of Time Series Analysis 1: 15-29.

    Article  MATH  MathSciNet  Google Scholar 

  • Greenberg, E. 2008. Introduction to Bayesian Econometrics, Cambridge University Press, New York.

    MATH  Google Scholar 

  • Hammersley, J. and Clifford, P. (1971). Markov fields on finite graphs and lattices, Unpub-lished Manuscipt.

    Google Scholar 

  • Harvey, A. C. 1998. Long-memory in stochastic volatility, in J. Knight and S. E. Satchell (ed.), Forecasting Volatility in Financial Markets, Butterworth-Heinemann, London, pp. 203-226.

    Google Scholar 

  • Harvey, A. C., Ruiz, E., and Shephard, N. 1994. Multivariate stochastic variance models, Review of Economic Studies 61: 247-264.

    Article  MATH  Google Scholar 

  • Harvey, A. C. and Shephard, N. 1996. The estimation of an asymmetric stochastic volatility model for asset returns, Journal of Business and Economics Statistics 14: 429-434.

    Article  Google Scholar 

  • Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57: 97-109.

    Article  MATH  Google Scholar 

  • Jacquier, E., Polson, N. G., and Rossi, P. E. 1994. Bayesian analysis of stochastic volatility models (with discussion), Journal of Business and Economic Statistics 12: 371-417.

    Article  Google Scholar 

  • Jacquier, E., Polson, N. G., and Rossi, P. E. 2004. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors, Journal of Econometrics 122: 185-212.

    Article  MathSciNet  Google Scholar 

  • Kim, S., Shephard, N., and Chib, S. 1998. Stochastic volatility: Likelihood inference and comparison with ARCH models, Review of Economic Studies 65: 361-393.

    Article  MATH  Google Scholar 

  • Koop, G. 2006. Bayesian Econometrics, Wiley-Interscience, London.

    Google Scholar 

  • Liesenfeld, R. and Richard, J. F. 2003. Univariate and multivariate stochastic volatility models: Estimation and diagnostics, Journal of Empirical Finance 10: 505-531.

    Article  Google Scholar 

  • Liesenfeld, R. and Jung, R. C. 2000. Stochastic volatility models: Conditional normality versus heavy-tailed distributions, Journal of Applied Econometrics 15: 137-160.

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. 1953. Equations of state calculations by fast computing machines, Journal of Chemical Physics 21: 1087-1092.

    Article  Google Scholar 

  • Melino, A. and Turnbull, S. M. 1990. Pricing foreign currency options with stochastic volatility, Journal of Econometrics 45: 239-265.

    Article  Google Scholar 

  • Sandmann, G. and Koopman, S. J. 1998. Estimation of stochastic volatility models via Monte Carlo maximum likelihood, Journal of Econometrics 87: 271-301.

    Article  MATH  MathSciNet  Google Scholar 

  • Taylor, S. J. 1982. Financial returns modelled by the product of two stochastic processes, a study of daily sugar prices 1961-79, in O. D. Anderson (ed.), Time Series Analysis: Theory and Practice 1, North-Holland, Amsterdam, pp. 203-226.

    Google Scholar 

  • Tierney, L. 1994. Markov Chains for exploring posterior distributions, The Annals of Statistics 22: 1701-1762.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Hautsch, N., Ou, Y. (2009). Stochastic Volatility Estimation Using Markov Chain Simulation. In: Härdle, W.K., Hautsch, N., Overbeck, L. (eds) Applied Quantitative Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69179-2_12

Download citation

Publish with us

Policies and ethics