Protocol Inference Using Static Path Profiles

  • Murali Krishna Ramanathan
  • Koushik Sen
  • Ananth Grama
  • Suresh Jagannathan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5079)

Abstract

Specification inference tools typically mine commonalities among states at relevant program points. For example, to infer the invariants that must hold at all calls to a procedure p requires examining the state abstractions found at all call-sites to p. Unfortunately, existing approaches to building these abstractions require being able to explore all paths (either static or dynamic) to all of p’s call-sites to derive specifications with any measure of confidence. Because programs that have complex control-flow structure may induce a large number of paths, naive path exploration is impractical.

In this paper, we propose a new specification inference technique that allows us to efficiently explore statically all paths to a program point. Our approach builds static path profiles, profile information constructed by a static analysis that accumulates predicates valid along different paths to a program point. To make our technique tractable, we employ a summarization scheme to merge predicates at join points based on the frequency with which they occur on different paths. For example, predicates present on a majority of static paths to all call-sites of any procedure p forms the pre-condition of p.

We have implemented a tool, marga, based on static path profiling. Qualitative analysis of the specifications inferred by marga indicates that it is more accurate than existing static mining techniques, can be used to derive useful specification even for APIs that occur infrequently (statically) in the program, and is robust against imprecision that may arise from examination of infeasible or infrequently occurring dynamic paths. A comparison of the specifications generated using marga with a dynamic specification inference engine based on cute, an automatic unit test generation tool, indicates that marga generates comparably precise specifications with smaller cost.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ammons, G., Bodik, R., Larus, J.: Mining specifications. In: Proceedings of POPL 2002, pp. 4–16 (2002)Google Scholar
  2. 2.
    Ammons, G., Mandelin, D., Bodik, R., Larus, J.: Debugging temporal specifications with concept analysis. In: Proceedings of PLDI 2003, pp. 182–195 (2003)Google Scholar
  3. 3.
    Anderson, P., Reps, T., Teitelbaum, T.: Design and implementation of a fine-grained software inspection tool. IEEE Trans. on Software Engineering 29(8), 721–733 (2003)CrossRefGoogle Scholar
  4. 4.
    Ball, T., Larus, J.: Efficient path profiling. In: MICRO-29 (December 1996)Google Scholar
  5. 5.
    Ball, T., Rajamani, S.K.: Automatically validating temporal safety properties of interfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103–122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: Mafia: A performance study of mining maximal frequent itemsets. In: FIMI 2003 (2003)Google Scholar
  7. 7.
    Chin, B., Markstrum, S., Millstein, T.: Semantic type qualifiers. In: Proceedings of PLDI 2005, pp. 85–95 (2005)Google Scholar
  8. 8.
    Ernst, M., Cockrell, J., Griswold, W., Notkin, D.: Dynamically discovering likely program invariants to support program evolution. IEEE TSE 27(2), 1–25 (2001)Google Scholar
  9. 9.
    Foster, J., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings of PLDI 2002 (2002)Google Scholar
  10. 10.
    Furr, M., Foster, J.: Checking type safety of foreign function calls. In: Proceedings of PLDI 2005 (2005)Google Scholar
  11. 11.
    Godefroid, P.: Compositional dynamic test generation. In: POPL 2007, pp. 47–54 (2007)Google Scholar
  12. 12.
    Godefroid, P., Klarslund, N., Sen, K.: Dart: Directed automated random testing. In: Proceedings of PLDI 2005, Chicago, Il, pp. 213–223 (2005)Google Scholar
  13. 13.
    Henzinger, T., Jhala, R., Majumdar, R.: Permissive interfaces. SIGSOFT Softw. Eng. Notes 30(5), 31–40 (2005)CrossRefGoogle Scholar
  14. 14.
    Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2004)Google Scholar
  15. 15.
    Kapadia, A.S., Chan, W., Moye, L.A.: Mathematical Statistics With Applications. CRC, Boca Raton (2005)MATHGoogle Scholar
  16. 16.
    Kremenek, T., Twohey, P., Back, G., Ng, A., Engler, D.: From uncertainty to belief: Inferring the specification within. In: Proceedings of OSDI 2006 (2006)Google Scholar
  17. 17.
    Lam, P., Kuncak, V., Rinard, M.: Generalized typestate checking for data structure consistency. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Li, Z., Zhou, Y.: Pr-miner: Automatically extracting implicit programming rules and detecting violations in large software code. In: Proceedings of ESEC-FSE 2005 (September 2005)Google Scholar
  19. 19.
    Mandelin, D., Xu, L., Bodik, R., Kimelman, D.: Jungloid mining: Helping to navigate the api jungle. In: Proceedings of PLDI 2005, pp. 48–61 (2005)Google Scholar
  20. 20.
    Ramanathan, M.K., Grama, A., Jagannathan, S.: Path-sensitive inference of function precedence protocols. In: Proceedings of ICSE 2007 (May 2007)Google Scholar
  21. 21.
    Ramanathan, M.K., Grama, A., Jagannathan, S.: Static specification inference using predicate mining. In: Proceedings of PLDI 2007, pp. 123–134 (2007)Google Scholar
  22. 22.
    Sen, K., Marinov, D., Agha, G.: Cute: A concolic unit testing engine for c. In: Proceedings of ESEC-FSE, pp. 263–272 (2005)Google Scholar
  23. 23.
    Shoham, S., Yahav, E., Fink, S., Pistoia, M.: Static specification mining using automata-based abstractions. In: ISSTA 2007: International Symposium on Software Testing and Analysis, pp. 174–184 (July 2007)Google Scholar
  24. 24.
    Vaswani, K., Nori, A.V., Chilimbi, T.M.: Preferential path profiling: compactly numbering interesting paths. In: Proceedings of POPL 2007, Nice, France (January 2007)Google Scholar
  25. 25.
    Weimer, W., Necula, G.: Mining temporal specifications for error detection. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 461–476. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Proceedings of POPL 2005 (2005)Google Scholar
  27. 27.
    Yang, J., Evans, D., Bhardwaj, D., Bhat, T., Das, M.: Perracotta: Mining temporal api rules from imperfect traces. In: Proceedings of ICSE 2006 (May 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Murali Krishna Ramanathan
    • 1
  • Koushik Sen
    • 2
  • Ananth Grama
    • 1
  • Suresh Jagannathan
    • 1
  1. 1.Department of Computer SciencePurdue University 
  2. 2.Electrical Engineering and Computer ScienceUniversity of CaliforniaBerkeley 

Personalised recommendations