Advertisement

Asymmetric Cell Divisions in the Early Embryo of the Leech Helobdella robusta

  • David A. Weisblat
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 45)

Keywords

Spindle Pole Asymmetric Cell Division Mitotic Apparatus Unequal Division Astral Microtubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493.CrossRefPubMedGoogle Scholar
  2. Arenas-Mena C (in press) Dev Genes Evol.Google Scholar
  3. Astrow S, Holton B, Weisblat D (1987) Centrifugation redistributes factors determining cleavage patterns in leech embryos. Dev Biol 120:270–283.CrossRefPubMedGoogle Scholar
  4. Astrow SH, Holton B, Weisblat DA (1989) Teloplasm formation in a leech, Helobdella triserialis, is a microtubule-dependent process. Dev Biol 135:306–319.CrossRefPubMedGoogle Scholar
  5. Bissen ST, Weisblat DA (1989) The durations and compositions of cell cycles in embryos of the leech, Helobdella triserialis. Development (Cambridge) 106:105–118.Google Scholar
  6. Collier JR (1997) Gastropods, the snails. In: Gilbert SF, Raunio AM (eds) Embryology, constructing the organism. Sinauer, Sunderland, pp 189–217.Google Scholar
  7. Crisp MD, Cook LG (2005) Do early branching lineages signify ancestral traits? Trends Ecol Evol 20:122–128.CrossRefPubMedGoogle Scholar
  8. Desjeux I, Price DJ (1999) The production and elimination of supernumerary blast cells in the leech embryo. Dev Genes Evol 209:284–293.CrossRefPubMedGoogle Scholar
  9. Doerflinger H, Benton R, Torres IL, Zwart MF, St Johnston D (2006) Drosophila anterior-posterior polarity requires actin-dependent PAR-1 recruitment to the oocyte posterior. Curr Biol 16:1090–1095.CrossRefPubMedGoogle Scholar
  10. Dohle W (1999) The ancestral cleavage pattern of the clitellates and its phylogenetic deviations. Hydrobiologia 402:267–283.CrossRefGoogle Scholar
  11. Erseus C, Kallersjo M (2004) 18S rDNA phylogeny of Clitellata (Annelida). Zool Scr 33:187–196.CrossRefGoogle Scholar
  12. Fernandez J, Olea N, Matte C (1987) Structure and development of the egg of the glossiphoniid leech Theromyzon rude: characterization of developmental stages and structure of the early uncleaved egg. Development (Cambridge) 100:211–226.Google Scholar
  13. Fernandez J, Olea N, Tellez V, Matte C (1990) Structure and development of the egg of the glossiphoniid leech Theromyzon rude: reorganization of the fertilized egg during completion of the first meiotic division. Dev Biol 137:142–154.CrossRefPubMedGoogle Scholar
  14. Fernandez J, Roegiers F, Cantillana V, Sardet C (1998) Formation and localization of cytoplasmic domains in leech and ascidian zygotes. Int J Dev Biol 42:1075–1084.PubMedGoogle Scholar
  15. Freeman G, Lundelius JW (1992) Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage. J Evol Biol 5:205–247.CrossRefGoogle Scholar
  16. Holland LZ (2000) Body-plan evolution in the Bilateria: early antero-posterior patterning and the deuterostome-protostome dichotomy. Curr Opin Genet Dev 10:434–442.CrossRefPubMedGoogle Scholar
  17. Holton B, Astrow SH, Weisblat DA (1989) Animal and vegetal teloplasms mix in the early embryo of the leech, Helobdella triserialis. Dev Biol 131:182–188.CrossRefPubMedGoogle Scholar
  18. Holton B, Wedeen CJ, Astrow SH, Weisblat DA (1994) Localization of polyadenylated RNAs during teloplasm formation and cleavage in leech embryos. Roux's Arch Dev Biol 204:46–53.CrossRefGoogle Scholar
  19. Huang FZ, Kang D, Ramirez-Weber FA, Bissen ST, Weisblat DA (2002) Micromere lineages in the glossiphoniid leech Helobdella. Development 129:719–732.PubMedGoogle Scholar
  20. Ishii R, Shimizu T (1997) Equalization of unequal first cleavage in the Tubifex egg by introduction of an additional centrosome: implications for the absence of cortical mechanisms for mitotic spindle asymmetry. Dev Biol 189:49–56.CrossRefPubMedGoogle Scholar
  21. Labbe JC, Maddox PS, Salmon ED, Goldstein B (2003) PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans. Curr Biol 13:707–714.CrossRefPubMedGoogle Scholar
  22. Liu NL, Isaksen DE, Smith CM, Weisblat DA (1998) Movements and stepwise fusion of endodermal precursor cells in leech. Dev Genes Evol 208:117–127.CrossRefPubMedGoogle Scholar
  23. Nance J (2005) PAR proteins and the establishment of cell polarity during C. elegans development. Bioessays 27:126–135.CrossRefPubMedGoogle Scholar
  24. Nardelli-Haefliger D, Shankland M (1993) Lox10, a member of the NK-2 homebox gene class, is expressed in a segmental pattern in the endoderm and in the cephalic nervous system of the leech Helobdella. Development 118:877–892.PubMedGoogle Scholar
  25. Nelson BH, Weisblat DA (1992) Cytoplasmic and cortical determinants interact to specify ectoderm and mesoderm in the leech embryo. Development 115:103–115.PubMedGoogle Scholar
  26. Panganiban G, Rubenstein JL (2002) Developmental functions of the Distal-less/Dlx homeobox genes. Development 129:4371–4386.PubMedGoogle Scholar
  27. Pellettieri J, Seydoux G (2002) Anterior-posterior polarity in C. elegans and Drosophila–PARallels and differences. Science 298:1946–1950.CrossRefPubMedGoogle Scholar
  28. Ren X (2005) Isolation and characterization of PAR-1 and PAR-6 homologs in Helobdella robusta. PhD thesis, Dept. of Molecular and Cell Biology, Univ. of California, Berkeley, California.Google Scholar
  29. Ren X, Weisblat DA (2006) Asymmetrization of first cleavage by transient disassembly of one spindle pole aster in the leech Helobdella robusta. Dev Biol 292:103–115.CrossRefPubMedGoogle Scholar
  30. Ruiz-Trillo I, Riutort M, Littlewood DT, Herniou EA, Baguna J (1999) Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919–1923.CrossRefPubMedGoogle Scholar
  31. Sandig M, Dohle W (1988) The cleavage pattern in the leech Theromyzon tessulatum (Hirudinea, Glossiphoniidae). J Morphol 196:217–252.CrossRefPubMedGoogle Scholar
  32. Shimizu T (1982) Ooplasmic segregation in the Tubifex egg: mode of pole plasm accumulation and possible involvement of microfilaments. Wilhelm Roux's Arch 191:246–256.CrossRefGoogle Scholar
  33. Shimizu T (1996) Behavior of centrosomes in early Tubifex embryos: asymmetic segregation and mitotic cycle-dependent duplication. Roux's Arch Dev Biol 205:290–299.CrossRefGoogle Scholar
  34. Shimizu T, Ishii R, Takahashi H (1998) Unequal cleavage in the early Tubifex embryo. Dev Growth Differ 40:257–266.CrossRefPubMedGoogle Scholar
  35. Symes K, Weisblat DA (1992) An investigation of the specification of unequal cleavages in leech embryos. Dev Biol 150:203–218.CrossRefPubMedGoogle Scholar
  36. Takahashi H, Shimizu T (1997) Role of intercellular contacts in generating an asymmetric mitotic apparatus in the Tubifex embryo. Dev Growth Differ 39:351–362.CrossRefPubMedGoogle Scholar
  37. Valentine JW, Collins AG (2000) The significance of moulting in Ecdysozoan evolution. Evol Dev 2:152–156.CrossRefPubMedGoogle Scholar
  38. Weisblat DA, Huang FZ (2001) An overview of glossiphoniid leech development. Can J Zool Rev Can Zool 79:218–232.CrossRefGoogle Scholar
  39. Weisblat DA, Shankland S (1985) Cell lineage and segmentation in the leech. Philos Trans R Soc Lond B Biol Sci 312:39–56.CrossRefPubMedGoogle Scholar
  40. Westermann S, Wang HW, Avila-Sakar A, Drubin DG, Nogales E, Barnes G (2006) The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440:565–569.CrossRefPubMedGoogle Scholar
  41. Wilson E (1892) The cell lineage of Nereis. J Morphol 6:361–480.CrossRefGoogle Scholar
  42. Zackson S (1984) Cell lineage, cel-cell interaction, and egment formation in the ectoderm of a glossiphoniid leech embryo. Dev Biol 104:143–160.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • David A. Weisblat
    • 1
  1. 1.Dept. of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations