Skip to main content

Asymmetric Cell Division in Plant Development

  • Chapter
Asymmetric Cell Division

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 45))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe M, Katsumata H, Komeda Y, Takahashi T (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–643.

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120.

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot (Lond) 97:883–893.

    Article  CAS  Google Scholar 

  • Bagnat M, Simons K (2002) Cell surface polarization during yeast mating. PNAS 99:14183–14188.

    Article  PubMed  CAS  Google Scholar 

  • Baum SF, Karanastasis L, Rost TL (1998) Morphogenetic effect of the herbicide Cinch on Arabidopsis thaliana root development. J Plant Growth Regul 17:107–114.

    Article  CAS  Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725.

    Article  PubMed  CAS  Google Scholar 

  • Beeckman T, Burssens S, Inze D (2001) The peri-cell-cycle in Arabidopsis. J Exp Bot 52:403–411.

    PubMed  CAS  Google Scholar 

  • Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis 47. Development 119:57–70.

    PubMed  CAS  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602.

    Article  PubMed  CAS  Google Scholar 

  • Bennett SRM, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J 8:505–520.

    Article  CAS  Google Scholar 

  • Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131.

    PubMed  CAS  Google Scholar 

  • Bergmann DC, Lukowitz W, Somerville CR (2004) Stomatal development and pattern controlled by a MAPKK kinase. Science 304:1494–1497.

    Article  PubMed  CAS  Google Scholar 

  • Berleth T, Jurgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118:575–587.

    Google Scholar 

  • Betschinger J, Knoblich JA (2004) Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14:R674–R685.

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44.

    Article  PubMed  CAS  Google Scholar 

  • Boavida LC, Becker JD, Feijo JA (2005) The making of gametes in higher plants. Int J Dev Biol 49:595–614.

    Article  PubMed  CAS  Google Scholar 

  • Bonke M, Thitamadee S, Mahonen AP, Hauser MT, Helariutta Y (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186.

    Article  PubMed  CAS  Google Scholar 

  • Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619.

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179.

    Article  PubMed  CAS  Google Scholar 

  • Carlsbecker A, Helariutta Y (2005) Phloem and xylem specification: pieces of the puzzle emerge. Curr Opin Plant Biol 8:512–517.

    Article  PubMed  CAS  Google Scholar 

  • Casamitjana-Martinez E, Hofhuis HF, Xu J, Liu CM, Heidstra R, Scheres B (2003) Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathway in the control of Arabidopsis root meristem maintenance. Curr Biol 13:1435–1441.

    Article  PubMed  CAS  Google Scholar 

  • Casero PJ, Casimiro I, Rodríguez-Gallardo L, Martín-Partido G, Lloret PG (1993) Lateral root initiation by asymmetrical transverse divisions of pericycle cells in adventitious roots of Allium cepa. Protoplasma 176:138–144.

    Article  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852.

    Article  PubMed  CAS  Google Scholar 

  • Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142.

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, McCormick S (1996) Sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122:3243–3253.

    PubMed  CAS  Google Scholar 

  • Croxdale JL (2000) Stomatal patterning in angiosperms. Am J Bot 87:1069–1080.

    Article  PubMed  Google Scholar 

  • De Smet I, Vanneste S, Inze D, Beeckman T (2006) Lateral root initiation or the birth of a new meristem. Plant Mol Biol 60:871–887.

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Kleine-Vehn J, Friml J (2005) Cell polarity, auxin transport, and cytoskeleton-mediated division planes: who comes first? Protoplasma 226:67–73.

    Article  PubMed  CAS  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433.

    Article  PubMed  Google Scholar 

  • DiDonato RJ, Arbuckle E, Buker S, Sheets J, Tobar J, Totong R, Grisafi P, Fink GR, Celenza JL (2004) Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. Plant J 37:340–353.

    Article  PubMed  CAS  Google Scholar 

  • Dubrovsky JG, Doerner PW, Colon-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol 124:1648–1657.

    Article  PubMed  CAS  Google Scholar 

  • Dubrovsky JG, Rost TL, Colon-Carmona A, Doerner P (2001) Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta 214:30–36.

    Article  PubMed  CAS  Google Scholar 

  • Eady C, Lindsey K, Twell D (1995) The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell 7:65–74.

    Article  PubMed  CAS  Google Scholar 

  • Fiers M, Hause G, Boutilier K, Casamitjana-Martinez E, Weijers D, Offringa R, van der Geest L, van Lookeren Campagne M, Liu CM (2004) Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem. Gene 327:37–49.

    Article  PubMed  CAS  Google Scholar 

  • Fowler JE, Quatrano RS (1997) Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu Rev Cell Dev Biol 13:697–743.

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153.

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865.

    Article  PubMed  CAS  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168.

    Article  PubMed  CAS  Google Scholar 

  • Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M (2005) Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J 44:382–395.

    Article  PubMed  CAS  Google Scholar 

  • Fukaki H, Taniguchi N, Tasaka M (2006) PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant J 48:380–389.

    Article  PubMed  CAS  Google Scholar 

  • Furner I, Pumfrey JE (1992) Cell fate in the shoot apical meristem of Arabidopsis thaliana. Development 115:755–764.

    Google Scholar 

  • Gallagher KL, Paquette AJ, Nakajima K, Benfey PN (2004) Mechanisms regulating SHORT-ROOT intercellular movement. Curr Biol 14:1847–1851.

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Nadeau J, Sack FD (2000a) Oriented asymmetric divisions that generate the stomatal spacing pattern in arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12:2075–2086.

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Nadeau J, Sack FD (2000b) Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. Plant Cell 12:2075–2086.

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230.

    Article  PubMed  CAS  Google Scholar 

  • Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jurgens G (2004) Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 131:389–400.

    Article  PubMed  CAS  Google Scholar 

  • Gladish DK, Rost TL (1993) The effects of temperature on primary root growth dynamics and lateral root distribution in garden pea (Pisum sativum L., cv. “Alaska”). Environ Exp Bot 33:243–258.

    Article  Google Scholar 

  • Gray JE, Hetherington AM (2004) Plant development: YODA the stomatal switch. Curr Biol 14:R488–R490.

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Wang Z, Yang Z (2004) ROP/RAC GTPase: an old new master regulator for plant signaling. Curr Opin Plant Biol 7:527–536.

    Article  PubMed  CAS  Google Scholar 

  • Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668.

    Article  PubMed  CAS  Google Scholar 

  • Haerizadeh F, Singh MB, Bhalla PL (2006) Transcriptional repression distinguishes somatic from germ cell lineages in a plant. Science 313:496–499.

    Article  PubMed  CAS  Google Scholar 

  • Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395.

    PubMed  CAS  Google Scholar 

  • Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615.

    Article  PubMed  CAS  Google Scholar 

  • Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100.

    Article  PubMed  CAS  Google Scholar 

  • Heidstra R, Welch D, Scheres B (2004) Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev 18:1964–1969.

    Article  PubMed  CAS  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567.

    Article  PubMed  CAS  Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inze D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351.

    Article  PubMed  CAS  Google Scholar 

  • Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Van MM, Inze D, Beeckman T (2004) Transcript profiling of early lateral root initiation. Proc Natl Acad Sci USA 101:5146–5151.

    Article  PubMed  CAS  Google Scholar 

  • Hobe M, Müller R, Grünewald M, Brand U, Simon R (2003) Loss of CLE40, a protein functionally equivalent to the stem cell restricting signal CLV3, enhances root waving in Arabidopsis. Devel Genes Evol 213:371–381.

    Article  CAS  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85.

    Article  PubMed  Google Scholar 

  • Horvitz HR, Herskowitz I (1992) Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68:237–255.

    Article  PubMed  CAS  Google Scholar 

  • Howden R, Park SK, Moore JM, Orme J, Grossniklaus U, Twell D (1998) Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsis. Genetics 149:621–631.

    PubMed  CAS  Google Scholar 

  • Hulskamp M, Parekh NS, Grini P, Schneitz K, Zimmermann I, Lolle SJ, Pruitt RE (1997) The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana. Devel Biol 187:114–124.

    Article  CAS  Google Scholar 

  • Irish VF, Sussex IM (1992) A fate map of the Arabidopsis embryonic shoot apical meristem. Development 115:745–753.

    Google Scholar 

  • Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47.

    Article  PubMed  CAS  Google Scholar 

  • Jeff A, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69.

    Article  Google Scholar 

  • Jenik PD, Barton MK (2005) Surge and destroy: the role of auxin in plant embryogenesis. Development 132:3577–3585.

    Article  PubMed  CAS  Google Scholar 

  • Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D (2004) Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–982.

    Article  PubMed  CAS  Google Scholar 

  • Jurgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56:281–299.

    Article  PubMed  CAS  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52:311–320.

    Article  PubMed  CAS  Google Scholar 

  • Knox JP (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int Rev Cytol 171:79–120.

    Article  PubMed  CAS  Google Scholar 

  • Konopka CA, Schleede JB, Skop AR, Bednarek SY (2006) Dynamin and cytokinesis. Traffic 7:239–247.

    Article  PubMed  CAS  Google Scholar 

  • Kranz E, Lorz H (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5:739–746.

    Article  PubMed  Google Scholar 

  • Kranz E, Wiegen P, Lorz H (1995) Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. Plant J 8:9–23.

    Article  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201.

    Article  PubMed  CAS  Google Scholar 

  • Lai LB, Nadeau JA, Lucas J, Lee EK, Nakagawa T, Zhao., Geisler M, Sack FD (2005) The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage. Plant Cell 17:2754–2767.

    Article  PubMed  CAS  Google Scholar 

  • Larkin JC, Marks MD, Nadeau J, Sack F (1997) Epidermal cell fate and patterning in leaves. Plant Cell 9:1109–1120.

    Article  PubMed  CAS  Google Scholar 

  • Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310.

    PubMed  CAS  Google Scholar 

  • Levesque MP, Vernoux T, Busch W, Cui H, Wang JY, Blilou I, Hassan H, Nakajima K, Matsumoto N, Lohmann JU, Scheres B, Benfey PN (2006) Whole-genome analysis of the SHORT-ROOT developmental pathway in Arabidopsis. PLoS Biol 4:e143.

    Article  PubMed  Google Scholar 

  • Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123.

    Article  PubMed  CAS  Google Scholar 

  • Lindsey K, Topping JF (1993) Embryogenesis: a question of pattern. J Exp Bot 44:359–374.

    Article  Google Scholar 

  • Lloyd C, Chan J (2006) Not so divided: the common basis of plant and animal cell division. Nat Rev Mol Cell Biol 7:147–152.

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Porat R, Nadeau JA, O'Neill SD (1996) Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 8:2155–2168.

    Article  PubMed  CAS  Google Scholar 

  • Lucas JR, Nadeau JA, Sack FD (2006) Microtubule arrays and Arabidopsis stomatal development. J Exp Bot 57:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–119.

    Article  PubMed  CAS  Google Scholar 

  • Lum L, Beachy PA (2004) The hedgehog response network: sensors, switches, and routers. Science 304:1755–1759.

    Article  PubMed  CAS  Google Scholar 

  • MacAlister CA, Ohashi-Ito K, Bergmann DC (2007) Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature epub ahead of print.

    Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77.

    Article  PubMed  CAS  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44.

    PubMed  CAS  Google Scholar 

  • Mallory TE, Chiang S-H, Cutter EG, Gifford EM Jr (1970) Sequence and pattern of lateral root formation in five selected species. Am J B 57:800–809.

    Article  Google Scholar 

  • Mansfield SG, Briarty LG (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can J Bot 69:461–476.

    Article  Google Scholar 

  • Mayer KFX, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815.

    Article  PubMed  CAS  Google Scholar 

  • Mayer U, Buttner G, Jurgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117:149–162.

    Google Scholar 

  • McCabe PF, Valentine TA, Forsberg LS, Pennell RI (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9:2225–2241.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy EK, Goldstein B (2006) Asymmetric spindle positioning. Curr Opin Cell Biol 18:79–85.

    Article  PubMed  CAS  Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16:S142–S153.

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JA, Sack FD (2002a) Control of stomatal distribution on the Arabidopsis leaf surface. Science 296:1697–1700.

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JA, Sack FD (2002b) Stomatal development in Arabidopsis. The Arabidopsis book. American Society of Plant Biologists, Rockville, MD, pp 1–28.

    Google Scholar 

  • Nadeau JA, Sack FD (2003) Stomatal development: cross talk puts mouths in place. Trends Plant Sci 8:294–299.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311.

    Article  PubMed  CAS  Google Scholar 

  • Nawy T, Lee JY, Colinas J, Wang JY, Thongrod SC, Malamy JE, Birnbaum K, Benfey PN (2005) Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17:1908–1925.

    Article  PubMed  CAS  Google Scholar 

  • Ning J, Peng XB, Qu LH, Xin HP, Yan TT, Sun M (2006) Differential gene expression in egg cells and zygotes suggests that the transcriptome is restructed before the first zygotic division in tobacco. FEBS Lett 580:1747–1752.

    Article  PubMed  CAS  Google Scholar 

  • Nothnagel EA (1997) Proteoglycans and related components in plant cells. Int Rev Cytol 174:195–291.

    Article  PubMed  CAS  Google Scholar 

  • Oh SA, Johnson A, Smertenko A, Rahman D, Park SK, Hussey PJ, Twell D (2005) A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr Biol 15:2107–2111.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi-Ito K, Bergmann DC (2006) Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development. Plant Cell 18:2493–2505.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Scholten S, Lorz H, Kranz E (2005) Identification of genes that are up- or down-regulated in the apical or basal cell of maize two-celled embryos and monitoring their expression during zygote development by a cell manipulation- and PCR-based approach. Plant Cell Physiol 46:332–338.

    Article  PubMed  CAS  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463.

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Howden R, Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125:3789–3799.

    PubMed  CAS  Google Scholar 

  • Pennell RI, Janniche L, Kjellbom P, Scofield GN, Peart JM, Roberts K (1991) Developmental regulation of a plasma membrane Arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 3:1317–1326.

    Article  PubMed  CAS  Google Scholar 

  • Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU (2007) Termination of asymmetric cell division and differentiation of stomata. Nature epub ahead of print.

    Google Scholar 

  • Poethig RS (1987) Clonal analysis of cell lineage patterns in plant development. Am J Bot 74:581–594.

    Article  Google Scholar 

  • Pollock EG, Jensen WA (1964) Cell development during early embryogenesis in Capsella and Gossypium. Am J Bot 51:915–921.

    Article  Google Scholar 

  • Qin Y, Zhao J (2006) Localization of arabinogalactan proteins in egg cells, zygotes, and two-celled proembryos and effects of {beta}-D-glucosyl Yariv reagent on egg cell fertilization and zygote division in Nicotiana tabacum L. J Exp Bot 57(9):2061–2074.

    Article  PubMed  CAS  Google Scholar 

  • Reddy GV, Meyerowitz EM (2005) Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. Science 310:663–667.

    Article  PubMed  Google Scholar 

  • Roegiers F, Jan YN (2004) Asymmetric cell division. Curr Opin Cell Biol 16:195–205.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini S, Heidstra R, Wildwater M, Scheres B (2003) SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17:354–358.

    Article  PubMed  CAS  Google Scholar 

  • Sachs T (1991) Pattern formation in plant tissues. Cambridge University Press, New York.

    Book  Google Scholar 

  • Sack FD (2004) Plant sciences. Yoda would be proud: valves for land plants. Science 304:1461–1462.

    Article  PubMed  CAS  Google Scholar 

  • Sauer M, Friml J (2004) In vitro culture of Arabidopsis embryos within their ovules. Plant J 40:835–843.

    Article  PubMed  Google Scholar 

  • Scarpella E, Meijer AH (2004) Pattern formation in the vascular system of monocot and dicot plant species. New Phytologist 164:209–242.

    Article  CAS  Google Scholar 

  • Schel JHN, Kieft H, van Lammeren AAM (1984) Interactions between embryo and endosperm during early developmental stage of maize caryopses (Zea mays). Can J Bot 62:2842–2853.

    Article  Google Scholar 

  • Scheres B, Benfey PN (1999) ASYMMETRIC CELL DIVISION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol 50:505–537.

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487.

    CAS  Google Scholar 

  • Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P, Benfey PN (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121:53–62.

    CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644.

    Article  PubMed  CAS  Google Scholar 

  • Schuck S, Simons K (2004) Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci 117:5955–5964.

    Article  PubMed  CAS  Google Scholar 

  • Sena G, Jung JW, Benfey PN (2004) A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression. Development 131:2817–2826.

    Article  PubMed  CAS  Google Scholar 

  • Serna L (2004) Plant biology good neighbours. Nature 430:302–304.

    Article  PubMed  CAS  Google Scholar 

  • Serna L (2005) Epidermal cell patterning and differentiation throughout the apical-basal axis of the seedling. J Exp Bot 56:1983–1989.

    Article  PubMed  CAS  Google Scholar 

  • Shevell DE, Leu WM, Gillmor CS, Xia G, Feldmann KA, Chua NH (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77:1051–1062.

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Kim Y, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32.

    Article  PubMed  CAS  Google Scholar 

  • Shpak ED, Lakeman MB, Torii KU (2003) Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell 15:1095–1110.

    Article  PubMed  CAS  Google Scholar 

  • Shpak ED, Berthiaume CT, Hill EJ, Torii KU (2004) Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development 131:1491–1501.

    Article  PubMed  CAS  Google Scholar 

  • Shpak ED, McAbee JM, Pillitteri LJ, Torii KU (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–293.

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Hake S, Sylvester AW (1996) The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122:481–489.

    PubMed  CAS  Google Scholar 

  • Spielman M, Preuss D, Li FL, Browne WE, Scott RJ, Dickinson HG (1997) TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development 124:2645–2657.

    PubMed  CAS  Google Scholar 

  • Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104.

    Article  PubMed  CAS  Google Scholar 

  • Sprunck S, Baumann U, Edwards K, Langridge P, Dresselhaus T (2005) The transcript composition of egg cells changes significantly following fertilization in wheat (Triticum aestivum L.). Plant J 41:660–672.

    Article  PubMed  CAS  Google Scholar 

  • Steeves TA, Sussex IM (1989) Patterns in plant development. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, lweiler L, Palme K, Jurgens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318.

    Article  PubMed  CAS  Google Scholar 

  • Stewart RN, Dermen H (1970) Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Am J Bot 57:816–826.

    Article  Google Scholar 

  • Terasaka O, Niitsu T (1987) Unequal cell division and chromatin differentiation in pollen grain cells. I. Centrifugal, cold and caffeine treatments. Bot Mag Tokyo 100:205–216.

    Article  Google Scholar 

  • Torres-Ruiz RA, Jurgens G (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120:2967–2978.

    PubMed  CAS  Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375:676–677.

    Article  CAS  Google Scholar 

  • Tupy J, Rihova L, Zarsky V (1991) Production of fertile tobacco pollen from microspores in suspension culture and its storage for in situ pollination. Sex Plant Reprod 4:284–287.

    Article  Google Scholar 

  • Twell D, Park SK, Lalanne E (1998) Asymmetric division and cell-fate determination in developing pollen. Trends Plant Sci 3:305–310.

    Article  Google Scholar 

  • Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711–714.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378:62–65.

    Article  PubMed  Google Scholar 

  • van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–289.

    Article  PubMed  CAS  Google Scholar 

  • Vanneste S, De RB, Beemster GT, Ljung K, De SI, Van IG, Naudts M, Iida R, Gruissem W, Tasaka M, Inze D, Fukaki H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17:3035–3050.

    Article  PubMed  CAS  Google Scholar 

  • Von Groll U, Berger D, Altmann T (2002) The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. Plant Cell 14:1527–1539.

    Article  CAS  Google Scholar 

  • Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jurgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270.

    Article  PubMed  CAS  Google Scholar 

  • Whittington AT, Vugrek O, Wei KJ, Hasenbein NG, Sugimoto K, Rashbrooke MC, Wasteneys GO (2001) MOR1 is essential for organizing cortical microtubules in plants. Nature 411:610–613.

    Article  PubMed  CAS  Google Scholar 

  • Wildwater M, Campilho A, Perez-Perez JM, Heidstra R, Blilou I, Korthout H, Chatterjee J, Mariconti L, Gruissem W, Scheres B (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123:1337–1349.

    Article  PubMed  CAS  Google Scholar 

  • Willats WGT, Knox JP (1996) A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of beta-glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J 9:919–925.

    Article  PubMed  CAS  Google Scholar 

  • Willemsen V, Friml J, Grebe M, van den Toorn A, Palme K, Scheres B (2003) Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYLTRANSFERASE1 function. Plant Cell 15:612–625.

    Article  PubMed  CAS  Google Scholar 

  • Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130.

    Article  PubMed  CAS  Google Scholar 

  • Wodarz A (2002) Establishing cell polarity in development. Nat Cell Biol 4:E39–E44.

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Scheres B (2005) Cell polarity: ROPing the ends together. Curr Opin Plant Biol 8:613–618.

    Article  PubMed  CAS  Google Scholar 

  • Yang CY, Spielman M, Coles JP, Li Y, Ghelani S, Bourdon V, Brown RC, Lemmon BE, Scott RJ, Dickinson HG (2003) TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J 34:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Sack FD (1995) The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7:2227–2239.

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Sack FD (1999) Ultrastructure of stomatal development in Arabidopsis (Brassicaceae) leaves. Am J Bot 86:929.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Heidstra, R. (2007). Asymmetric Cell Division in Plant Development. In: Macieira-Coelho, A. (eds) Asymmetric Cell Division. Progress in Molecular and Subcellular Biology, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69161-7_1

Download citation

Publish with us

Policies and ethics