Skip to main content

Integrating Epistemic Action (Active Vision) and Pragmatic Action (Reaching): A Neural Architecture for Camera-Arm Robots

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 5040)

Abstract

The active vision and attention-for-action frameworks propose that in organisms attention and perception are closely integrated with action and learning. This work proposes a novel bio-inspired integrated neural-network architecture that on one side uses attention to guide and furnish the parameters to action, and on the other side uses the effects of action to train the task-oriented top-down attention components of the system. The architecture is tested both with a simulated and a real camera-arm robot engaged in a reaching task. The results highlight the computational opportunities and difficulties deriving from a close integration of attention, action and learning.

Keywords

  • Active Vision
  • Real Robot
  • Saccade Target
  • Frequent Sequence
  • Epistemic Action

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-69134-1_22
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-69134-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, New York (1982)

    Google Scholar 

  2. Fermuller, C., Aloimonos, Y.: Vision and action. Image Vision Comput. 13(10), 725–744 (1995)

    CrossRef  Google Scholar 

  3. Ballard, D.: Animate vision. Artif. Intell. 48, 57–86 (1991)

    CrossRef  Google Scholar 

  4. Posner, M.I.: Orienting of attention. Q J. Exp. Psychol. 32(1), 3–25 (1980)

    CrossRef  Google Scholar 

  5. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognit Psychol. 12(1), 97–136 (1980)

    CrossRef  Google Scholar 

  6. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology. MIT Press, Cambridge (2000)

    Google Scholar 

  7. Floreano, D., Kato, T., Marocco, D., Sauser, E.: Coevolution of active vision and feature selection. Biol. Cybern. 90(3), 218–228 (2004)

    MATH  CrossRef  Google Scholar 

  8. Cliff, D., Noble, J.: Knowledge-based vision and simple visual machines. Philos. T Roy Soc. B 352(1358), 1165–1175 (1997)

    CrossRef  Google Scholar 

  9. de Croon, G., Postma, E.: Sensory-motor coordination in object detection. In: IEEE Symp. ALIFE 2007, pp. 147–154 (2007)

    Google Scholar 

  10. Whitehead, S.D., Ballard, D.H.: Learning to perceive and act by trial and error. Mach. Learn. 7(1), 45–83 (1991)

    Google Scholar 

  11. Allport, D.: Selection for action: Some behavioral and neurophysiological considerations of attention and action. In: Perspectives on perception and action, vol. 15, pp. 395–419. Erlbaum, Hillsdale (1987)

    Google Scholar 

  12. Neumann, O.: Direct parameter specification and the concept of perception. Psychol. Res. 52(2-3), 207–215 (1990)

    CrossRef  Google Scholar 

  13. Balkenius, C.: Attention, habituation and conditioning: Toward a computational model. Cogn. Sci.Quart. 1(2), 171–204 (2000)

    Google Scholar 

  14. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)

    CrossRef  Google Scholar 

  15. Schmidhuber, J., Huber, R.: Learning to generate artificial fovea trajectories for target detection. Int. J. Neural Syst. 2(1-2), 135–141 (1991)

    Google Scholar 

  16. Ognibene, D., Balkenius, C., Baldassarre, G.: A reinforcement-learning model of top-down attention based on a potential-action map. In: The Anticipatory Approach. Springer, Berlin (2008)

    Google Scholar 

  17. Ognibene, D., Rega, A., Baldassarre, G.: A model of reaching that integrates reinforcement learning and population encoding of postures. In: 9th Int. Conf. Simul. Adapt. Behav., September 2006, pp. 381–393. Springer, Heidelberg (2006)

    Google Scholar 

  18. Pouget, A., Ducom, J.C., Torri, J., Bavelier, D.: Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83(1), B1–11 (2002)

    CrossRef  Google Scholar 

  19. Pouget, A., Zhang, K., Deneve, S., Latham, P.E.: Statistically efficient estimation using population coding. Neural Comput. 10(2), 373–401 (1998)

    CrossRef  Google Scholar 

  20. Cisek, P.: Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26(38), 9761–9770 (2006)

    CrossRef  Google Scholar 

  21. Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psychol. Rev. 109(3), 545–572 (2002)

    CrossRef  Google Scholar 

  22. Sutton, R., Barto, A.: Reinforcement Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  23. Dominey, P.F., Arbib, M.A.: A cortico-subcortical model for generation of spatially accurate sequential saccades. Cereb Cortex 2(2), 153–175 (1992)

    CrossRef  Google Scholar 

  24. Klein: Inhibition of return. Trends Cogn. Sci. 4(4), 138–147 (2000)

    CrossRef  Google Scholar 

  25. Herbort, O., Ognibene, D., Butz, M.V., Baldassarre, G.: Learning to select targets within targets in reaching tasks. In: IEEE 6th Intern. Conf. Development Learning, July 2007, pp. 7–12 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ognibene, D., Balkenius, C., Baldassarre, G. (2008). Integrating Epistemic Action (Active Vision) and Pragmatic Action (Reaching): A Neural Architecture for Camera-Arm Robots. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)