Integrating Epistemic Action (Active Vision) and Pragmatic Action (Reaching): A Neural Architecture for Camera-Arm Robots

  • Dimitri Ognibene
  • Christian Balkenius
  • Gianluca Baldassarre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5040)

Abstract

The active vision and attention-for-action frameworks propose that in organisms attention and perception are closely integrated with action and learning. This work proposes a novel bio-inspired integrated neural-network architecture that on one side uses attention to guide and furnish the parameters to action, and on the other side uses the effects of action to train the task-oriented top-down attention components of the system. The architecture is tested both with a simulated and a real camera-arm robot engaged in a reaching task. The results highlight the computational opportunities and difficulties deriving from a close integration of attention, action and learning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, New York (1982)Google Scholar
  2. 2.
    Fermuller, C., Aloimonos, Y.: Vision and action. Image Vision Comput. 13(10), 725–744 (1995)CrossRefGoogle Scholar
  3. 3.
    Ballard, D.: Animate vision. Artif. Intell. 48, 57–86 (1991)CrossRefGoogle Scholar
  4. 4.
    Posner, M.I.: Orienting of attention. Q J. Exp. Psychol. 32(1), 3–25 (1980)CrossRefGoogle Scholar
  5. 5.
    Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognit Psychol. 12(1), 97–136 (1980)CrossRefGoogle Scholar
  6. 6.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Floreano, D., Kato, T., Marocco, D., Sauser, E.: Coevolution of active vision and feature selection. Biol. Cybern. 90(3), 218–228 (2004)MATHCrossRefGoogle Scholar
  8. 8.
    Cliff, D., Noble, J.: Knowledge-based vision and simple visual machines. Philos. T Roy Soc. B 352(1358), 1165–1175 (1997)CrossRefGoogle Scholar
  9. 9.
    de Croon, G., Postma, E.: Sensory-motor coordination in object detection. In: IEEE Symp. ALIFE 2007, pp. 147–154 (2007)Google Scholar
  10. 10.
    Whitehead, S.D., Ballard, D.H.: Learning to perceive and act by trial and error. Mach. Learn. 7(1), 45–83 (1991)Google Scholar
  11. 11.
    Allport, D.: Selection for action: Some behavioral and neurophysiological considerations of attention and action. In: Perspectives on perception and action, vol. 15, pp. 395–419. Erlbaum, Hillsdale (1987)Google Scholar
  12. 12.
    Neumann, O.: Direct parameter specification and the concept of perception. Psychol. Res. 52(2-3), 207–215 (1990)CrossRefGoogle Scholar
  13. 13.
    Balkenius, C.: Attention, habituation and conditioning: Toward a computational model. Cogn. Sci.Quart. 1(2), 171–204 (2000)Google Scholar
  14. 14.
    Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)CrossRefGoogle Scholar
  15. 15.
    Schmidhuber, J., Huber, R.: Learning to generate artificial fovea trajectories for target detection. Int. J. Neural Syst. 2(1-2), 135–141 (1991)Google Scholar
  16. 16.
    Ognibene, D., Balkenius, C., Baldassarre, G.: A reinforcement-learning model of top-down attention based on a potential-action map. In: The Anticipatory Approach. Springer, Berlin (2008)Google Scholar
  17. 17.
    Ognibene, D., Rega, A., Baldassarre, G.: A model of reaching that integrates reinforcement learning and population encoding of postures. In: 9th Int. Conf. Simul. Adapt. Behav., September 2006, pp. 381–393. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Pouget, A., Ducom, J.C., Torri, J., Bavelier, D.: Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83(1), B1–11 (2002)CrossRefGoogle Scholar
  19. 19.
    Pouget, A., Zhang, K., Deneve, S., Latham, P.E.: Statistically efficient estimation using population coding. Neural Comput. 10(2), 373–401 (1998)CrossRefGoogle Scholar
  20. 20.
    Cisek, P.: Integrated neural processes for defining potential actions and deciding between them: a computational model. J. Neurosci. 26(38), 9761–9770 (2006)CrossRefGoogle Scholar
  21. 21.
    Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psychol. Rev. 109(3), 545–572 (2002)CrossRefGoogle Scholar
  22. 22.
    Sutton, R., Barto, A.: Reinforcement Learning. MIT Press, Cambridge (1998)Google Scholar
  23. 23.
    Dominey, P.F., Arbib, M.A.: A cortico-subcortical model for generation of spatially accurate sequential saccades. Cereb Cortex 2(2), 153–175 (1992)CrossRefGoogle Scholar
  24. 24.
    Klein: Inhibition of return. Trends Cogn. Sci. 4(4), 138–147 (2000)CrossRefGoogle Scholar
  25. 25.
    Herbort, O., Ognibene, D., Butz, M.V., Baldassarre, G.: Learning to select targets within targets in reaching tasks. In: IEEE 6th Intern. Conf. Development Learning, July 2007, pp. 7–12 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dimitri Ognibene
    • 1
    • 2
  • Christian Balkenius
    • 3
  • Gianluca Baldassarre
    • 1
  1. 1.Lab. of Autonomous Robotics and Artificial Life, Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle RicercheLARAL-ISTC-CNRRomaItaly
  2. 2.DIST, Dip. di Informatica Sistemistica e TelematicaUniversita’ di GenovaGenovaItaly
  3. 3.Lund University Cognitive ScienceLundSweden

Personalised recommendations