Skip to main content

Imaging Studies

  • Chapter
Spinal Disorders

Abstract

Standard radiographs still represent the basis of spinal imaging. They can be obtained with a number of techniques: Conventional film/screen combination is an analogue technique which is still widely used in small hospitals and practitioners’ offices. Most radiology institutions, however, use digital systems, i.e.,

  • computed radiology (CR) systems or

  • digital radiography (DR) systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez L, Perez-Higueras A, Granizo JJ, de Miguel I, Quinones D, Rossi RE (2005) Predictors of outcomes of percutaneous vertebroplasty for osteoporotic vertebral fractures. Spine 30:87–92

    PubMed  Google Scholar 

  2. Antinnes J, Dvorak J, Hayek J, Panjabi M, Grob D (1994) The value of functional computed tomography in the valuation of soft-tissue injury in the upper cervical spine, Eur Spine J 3:98–101

    Article  PubMed  CAS  Google Scholar 

  3. Bartels E, Flugel KA (1996) Evaluation of extracranial vertebral artery dissection with duplex color-flow imaging. Stroke 27:290–5

    PubMed  CAS  Google Scholar 

  4. Baur A, Stabler A, Arbogast S, Duerr HR, Bartl R, Reiser M (2002) Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology 225:730–5

    Article  PubMed  Google Scholar 

  5. Bohn HP, Reich L, Suljaga-Petchel K (1992) Inadvertent intrathecal use of ionic contrast media for myelography. AJNR Am J Neuroradiol 13:1515–9

    PubMed  CAS  Google Scholar 

  6. Brant-Zawadzki M, Jensen M (1995) Spinal nomenclature. Spine 20:388–90

    Article  PubMed  CAS  Google Scholar 

  7. Brant-Zawadzki MN, Jensen MC, Obuchowski N, Ross JS, Modic MT (1995) Interobserver and intraobserver variability in interpretation of lumbar disc abnormalities. A comparison of two nomenclatures. Spine 20:1257–63; discussion 1264

    Article  PubMed  CAS  Google Scholar 

  8. Cooke FJ, Blamire AM, Manners DN, Styles P, Rajagopalan B (2004) Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord. Magn Reson Med 51:1122–8

    Article  PubMed  CAS  Google Scholar 

  9. de Bruin ED, Vanwanseele B, Dambacher MA, Dietz V, Stussi E (2005) Long-term changes in the tibia and radius bone mineral density following spinal cord injury. Spinal Cord 43:96–101

    Article  PubMed  Google Scholar 

  10. Dora C, Walchli B, Elfering A, Gal I, Weishaupt D, Boos N (2002) The significance of spinal canal dimensions in discriminating symptomatic from asymptomatic disc herniations. Eur Spine J 11:575–81

    Article  PubMed  Google Scholar 

  11. Flanders AE, Spettell CM, Tartaglino LM, Friedman DP, Herbison GJ (1996) Forecasting motor recovervafter cervical spinal cord injury: value of MR imaging. Radiology 201:649–55

    PubMed  CAS  Google Scholar 

  12. Fritz T, Klein A, Krieglstein C, Mattern R, Kallieris D, Meeder PJ (2000) Teaching model for intraoperative spinal sonography in spinal fractures. An experimental study. Arch Orthop Trauma Surg 120:183–7

    Article  PubMed  CAS  Google Scholar 

  13. Galiano K, Obwegeser AA, Bodner G, Freund MC, Gruber H, Maurer H, Schatzer R, Ploner F (2005) Ultrasound-guided periradicular injections in the middle to lower cervical spine: an imaging study of a new approach. Reg Anesth Pain Med 30:391–6

    Article  PubMed  Google Scholar 

  14. Georgy BA, Hesselink JR, Middleton MS (1995) Fat-suppression contrast-enhanced MRI in the failed back surgery syndrome: a prospective study. Neuroradiology 37:51–7

    Article  PubMed  CAS  Google Scholar 

  15. Grampp S, Jergas M, Lang P, Steiner E, Fuerst T, Gluer CC, Mathur A, Genant HK (1996) Quantitative CT assessment of the lumbar spine and radius in patients with osteoporosis. AJR Am J Roetgenol 167:133–40

    CAS  Google Scholar 

  16. Hansen J, Jurik AG, Fiirgaard B, Egund N (2003) Optimisation of scoliosis examinations in children. Pediatr Radiol 33:752–65

    Article  PubMed  Google Scholar 

  17. Jevtic V, Kos-Golja M, Rozman B, McCall I (2000) Marginal erosive discovertebral “Romanus” lesions in ankylosing spondylitis demonstrated by contrast enhanced Gd-DTPA magnetic resonance imaging. Skeletal Radiol 29:27–33

    Article  PubMed  CAS  Google Scholar 

  18. Katayama H, Heneine N, van Gessel R, Taroni P, Spinazzi A (2001) Clinical experience with iomeprol in myelography and myelo-CT: clinical pharmacology and double-blind comparisons with iopamidol, iohexol, and iotrolan. Invest Radiol 36:22–32

    Article  PubMed  CAS  Google Scholar 

  19. Katzberg RW, Benedetti PF, Drake CM, Ivanovic M, Levine RA, Beatty CS, Nemzek WR, McFall RA, Ontell FK, Bishop DM, Poirier VC, Chong BW (1999) Acute cervical spine injuries: prospective MR imaging assessment at a level 1 trauma center. Radiology 213:203–12

    PubMed  CAS  Google Scholar 

  20. Kirvela O, Svedstrom E, Lundbom N (1992) Ultrasonic guidance of lumbar sympathetic and celiac plexus block: a new technique. Reg Anesth 17:43–6

    PubMed  CAS  Google Scholar 

  21. Ludwig H, Fruhwald F, Tscholakoff D, Rasoul S, Neuhold A, Fritz E (1987) Magnetic resonance imaging of the spine in multiple myeloma. Lancet 2:364–6

    Article  PubMed  CAS  Google Scholar 

  22. Masaryk TJ, Ross JS, Modic MT, Boumphrey F, Bohlman, H, Wilber G (1988) High-resolution MR imaging of sequenstered lumbar intervertebral disks. AJR Am J Roentgenol 150:1155–62

    PubMed  CAS  Google Scholar 

  23. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–9

    PubMed  CAS  Google Scholar 

  24. Mullin WJ, Heithoff KB, Gilbert TJ, Jr., Renfrew DL (2000) Magnetic resonance evaluation of recurrent disc herniation: is gadolinium necessary? Spine 25:1493–9

    Article  PubMed  CAS  Google Scholar 

  25. Parizel PM, Baleriaux D, Rodesch G, Segebarth C, Lalmand B, Christophe C, Lemort M, Haesendonck P, Niendorf HP, Flament-Durand J, et al. (1989) Gd-DTPA-enhanced MR imaging of spinal tumors. AJR Am J Roentgenol 152:1087–96

    PubMed  CAS  Google Scholar 

  26. Peh WC, Chan JH (2001) Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol 30:179–91

    Article  PubMed  CAS  Google Scholar 

  27. Pfirrmann CW, Binkert CA, Zanetti M, Boos N, Hodler J (2000) Functional MR imaging of the craniocervical junction. Correlation with alar ligaments and occipito-atlantoaxial joint morphology: a study in 50 asymptomatic subjects. Schweiz Med Wochenschr 130:645–51

    PubMed  CAS  Google Scholar 

  28. Pfirrmann CW, Binkert CA, Zanetti M, Boos N, Hodler J (2001) MR morphology of alar ligaments and occipitoatlantoaxial joints: study in 50 asymptomatic subjects. Radiology 218:133–7

    PubMed  CAS  Google Scholar 

  29. Pfirrmann CW, Dora C, Schmid MR, Zanetti M, Hodler J, Boos N (2004) MR image-based grading of lumbar nerve root compromise due to disk herniation: reliability study with surgical correlation. Radiology 230:583–8

    Article  PubMed  Google Scholar 

  30. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 26:1873–8

    Article  PubMed  CAS  Google Scholar 

  31. Post MJ, Sze G, Quencer RM, Eismont FJ, Green BA, Gahbauer H (1990) Gadoliniumenhanced MR in spinal infection. J Comput Assist Tomogr 14:721–9

    Article  PubMed  CAS  Google Scholar 

  32. Roos JE, Hilfiker P, Platz A, Desbiolles L, Boehm T, Marincek B, Weishaupt D (2004) MDCT in emergency radiology: is a standardized chest or abdominal protocol sufficient for evaluation of thoracic and lumbar spine trauma? AJR Am J Roentgenol 183:959–68

    PubMed  Google Scholar 

  33. Rudisch A, Kremser C, Peer S, Kathrein A, Judmaier W, Daniaux H (1998) Metallic artifacts in magnetic resonance imaging of patients with spinal fusion. A comparison of implant materials and imaging sequences. Spine 23:692–9

    Article  PubMed  CAS  Google Scholar 

  34. Sapir DA, Gorup JM (2001) Radiofrequency medial branch neurotomy in litigant and nonlitigant patients with cervical whiplash: a prospective study. Spine 26:E268–73

    Article  PubMed  CAS  Google Scholar 

  35. Saupe N, Prussmann KP, Luechinger R, Bosiger P, Marincek B, Weishaupt D (2005) MR imaging of the wrist: comparison between 1.5-and 3-T MR imaging—preliminary experience. Radiology 234:256–64

    Article  PubMed  Google Scholar 

  36. Schmid MR, Stucki G, Duewell S, Wildermuth S, Romanowski B, Hodler J (1999) Changes in cross-sectional measurements of the spinal canal and intervertebral foramina as a function of body position: in vivo studies on an open-configuration MR system. AJR Am J Roentgenol 172:1095–102

    PubMed  CAS  Google Scholar 

  37. Spitzer WO, Skovron ML, Salmi LR, Cassidy JD, Duranceau J, Suissa S, Zeiss E (1995) Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining “whiplash” and its management. Spine 20:1S–73S

    Article  PubMed  CAS  Google Scholar 

  38. Spring DB, Bettmann MA, Barkan HE (1997) Nonfatal adverse reactions to iodinated contrast media: spontaneous reporting to the U.S. Food and Drug Administration, 1978–1994. Radiology 204:325–32

    PubMed  CAS  Google Scholar 

  39. Stadnik TW, Lee RR, Coen HL, Neirynck EC, Buisseret TS, Osteaux MJ (1998) Annular tears and disk herniation: prevalence and contrast enhancement on MR images in the absence of low back pain or sciatica. Radiology 206:49–55

    PubMed  CAS  Google Scholar 

  40. Stumpe KD, Zanetti M, Weishaupt D, Hodler J, Boos N, Von Schulthess GK (2002) FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol 179: 1151–7

    PubMed  Google Scholar 

  41. Subramanian G, McAfee JG, Bell EG, Blair RJ, O’Mara RE, Ralston PH (1972) 99m Tc-labeled poly phosphate as a skeletal imaging agent. Radiology 102:701–4

    PubMed  CAS  Google Scholar 

  42. Teeuwisse WM, Geleijns J, Broerse JJ, Obermann WR, van Persijn van Meerten EL (2001) Patient and staff dose during CT guided biopsy, drainage and coagulation. Br J Radiol 74:720–6

    PubMed  CAS  Google Scholar 

  43. Trueb P (2001) Kompendium für aerztliche Strahlenschutz-Sachverstaendige. Verlag Paul Haupt, Berne

    Google Scholar 

  44. Turner CH, Peacock M, Timmerman L, Neal JM, Johnson CC, Jr. (1995) Calcaneal ultrasonic measurements discriminate hip fracture in dependently of bone mass. Osteoporos Int 5:130–5

    Article  PubMed  CAS  Google Scholar 

  45. Veras LM, Pedraza-Gutierrez S, Castellanos J, Capellades J, Casamitjana J, Rovira-Canellas A (2000) Vertebral artery occlusion after acute cervical spine trauma. Spine 25:1171–7

    Article  PubMed  CAS  Google Scholar 

  46. Vock P, Valley J (2004) Medizinische Strahlenexposition in der Schweiz. Teil 1: Frequenzen, Dosen, Konsequenzen. Schweiz Med Forum 4:845–50

    Google Scholar 

  47. Wehrli FW, Hilaire L, Fernandez-Seara M, Gomberg BR, Song HK, Zemel B, Loh L, Snyder PJ (2002) Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 17:2265–73

    Article  PubMed  Google Scholar 

  48. Weishaupt D, Schmid MR, Zanetti M, Boos N, Romanowski B, Kissling RO, Dvorak J, Hodler J (2000) Positional MR imaging of the lumbar spine: does it demonstrate nerve root compromise not visible at conventional MR imaging. Radiology 215:247–53

    PubMed  CAS  Google Scholar 

  49. Weishaupt D, Zanetti M, Boos N, Hodler J (1999) MR imaging and CT in osteoarthritis of the lumbar facet joints. Skeletal Radiol 28:215–9

    Article  PubMed  CAS  Google Scholar 

  50. Wildermuth S, Zanetti M, Duewell S, Schmid MR, Romanowski B, Benini A, Boni T, Hodler J (1998) Lumbar spine: quantitative and qualitative assessment of positional (upright flexion and extension) MR imaging and myelography. Radiology 207:391–8

    PubMed  CAS  Google Scholar 

  51. Williams RL, Hardman JA, Lyons K (1998) MR imaging of suspected acute spinal instability. Injury 29:109–13

    Article  PubMed  CAS  Google Scholar 

  52. Zhou XI, Leeds NE, McKinnon GC, Kumar AJ (2002) Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol 23:165–70

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmid, M.R., Hodler, J. (2008). Imaging Studies. In: Boos, N., Aebi, M. (eds) Spinal Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69091-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69091-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40511-5

  • Online ISBN: 978-3-540-69091-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics