Functional Measures of Therapy Based on Radiological Imaging

  • David Dean
  • Nathan Cross
  • Davood Varghai
  • Nancy L. Oleinick
  • Chris A. Flask


We seek a noninvasive, functional, radiological imaging method to determine the specificity and sensitivity of an ablative treatment for deeply placed lesions that cannot be directly visualized, in our case phthalocyanine-4 photodynamic therapy (Pc 4-PDT) of brain tumors. In a preliminary study we had expected that micro-positron emission tomography (μPET) would show dramatically reduced if not negligible 18F-FDG activity following Pc 4-PDT; however, our study has not found a statistically significant difference between the imaging of brain tumors in animals that underwent Pc 4-PDT and those that did not. While several magnetic resonance imaging (MRI) pulse sequences also did not discriminate tumors that had received treatment, our study of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) was able to discriminate tumors that had undergone necrosis following Pc 4-PDT. We expect that in addition to imaging therapeutic necrosis, it will also be possible to utilize other noninvasive, radiological imaging techniques to track apoptosis and/or autophagy in deeply placed lesions following treatments such as Pc 4-PDT.


Brain Tumor Photodynamic Therapy Chemical Shift Imaging Proton Solid Melanoma Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bérard V, Rousseau JA, Cadorette J, Hubert L, Bentourkia M, van Lier JE, Lecomte R (2006) Dynamic imaging of transient metabolic processes by small-animal PET for the evaluation of photosensitizers in photodynamic therapy of cancer. J Nucl Med 47:1119–1126PubMedGoogle Scholar
  2. Blankenberg FG, Vanderheyden JL, Strauss HW, Tait JF (2006) Radiolabeling of HYNIC-annexin V with technetium-99m for in vivo imaging of apoptosis. Nat Protoc 1:108–110PubMedCrossRefGoogle Scholar
  3. Buytaert E, Callewaert G, Hendrickx N, Scorrano L, Hartmann D, Missiaen L, Vandenheede JR, Heirman I, Grooten J, Agostinis P (2006) Role of endoplasmic reticulum depletion and mul-tidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy. FASEB J 20:756–758PubMedGoogle Scholar
  4. Buytaert E, Matroule JY, Durinck S, Close P, Kocanova S, Vandenheede JR, de Witte PA, Piette J, Agostinis P (2008) Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells. Oncogene 27:1916–1929PubMedCrossRefGoogle Scholar
  5. Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R, Hunting DJ, Pavan RA, Zeisler SK, van Lier JE (2007) PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 34:247–258PubMedCrossRefGoogle Scholar
  6. Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468–1481PubMedCrossRefGoogle Scholar
  7. Chen F, Suzuki Y, Nagai N, Jin L, Yu J, Wang H, Marchal G, Ni Y (2007) Rodent stroke induced by photochemical occlusion of proximal middle cerebral artery: evolution monitored with MR imaging and histopathology. Eur J Radiol 63:68–75PubMedCrossRefGoogle Scholar
  8. Chopp M, Helpern JA, Frinak S, Hetzel FW, Ewing JR, Welch KM (1985) In vivo 31-P NMR of photoactivated hematoporphyrin derivative in cat brain. Med Phys 12:256–258PubMedCrossRefGoogle Scholar
  9. Collins DJ, Padhani AR (2004) Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges. IEEE Eng Med Biol Mag 23:65–83PubMedCrossRefGoogle Scholar
  10. Cross N, Varghai D, Spring-Robinson C, Sharma R, Muzic RF Jr, Oleinick NL, Dean D (2007) Analysis of 18F-fluorodeoxy-glucose PET imaging data captured before and after Pc 4-mediated photodynamic therapy of U87 tumors in the athymic nude rat. In: Kollias N, Choi B, Zeng H, Malek RS, Wong BJ, Ilgner JFR, Gregory KW, Tearney GJ, Hirschberg H, Madsen SJ (eds) Proceedings of Photonics West 2007: Photonic Therapeutics and Diagnostics III (SPIE 6424). SPIE, Bellingham, WA, pp 64242F1–64242F8Google Scholar
  11. Czernin J, Weber WA, Herschman HR (2006) Molecular imaging in the development of cancer therapeutics. Annu Rev Med 57:99–118PubMedCrossRefGoogle Scholar
  12. Davis TW, O'Neal JM, Pagel MD, Zweifel BS, Mehta PP, Heuvelman DM, Masferrer JL (2004) Synergy between celecoxib and radiotherapy results from inhibition of cyclooxygenase-2-derived prostaglandin E2, a survival factor for tumor and associated vasculature. Cancer Res 64(1):279–285PubMedCrossRefGoogle Scholar
  13. Di Costanzo A, Scarabino T, Trojsi F, Popolizio T, Catapano D, Giannatempo GM, Bonavita S, Portaluri M, Tosetti M, d'Angelo VA, Salvolini U, Tedeschi G (2008) Proton MR spectroscopy of cerebral gliomas at 3 T: spatial heterogeneity, and tumour grade and extent. Eur Radiol 18(8):1727–1735PubMedCrossRefGoogle Scholar
  14. George JE 3rd, Ahmad Y, Varghai D, Li X, Berlin J, Jackowe D, Jungermann M, Wolfe MS, Lilge L, Totonchi A, Morris RL, Peterson A, Lust WD, Kenney ME, Hoppel CL, Sun J, Oleinick NL, Dean D (2005) Pc 4 photodynamic therapy of U87-derived human glioma in the nude rat. Lasers Surg Med 36(5):383–389PubMedCrossRefGoogle Scholar
  15. Hirschberg H, Angell Petersen E, Spatalen S, Mathews M, Madsen SJ (2007) Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats. In: Kollias N, Choi B, Zeng H, Malek RS, Wong BJ, Ilgner JFR, Gregory KW, Tearney GJ, Hirschberg H, Madsen SJ (eds) Proceedings of Photonics West 2007: Photonic Therapeutics and Diagnostics III (SPIE 6424). SPIE, Bellingham, WA, pp 6424B1–6424B8Google Scholar
  16. Kessel D, Arroyo AS (2007) Apoptotic and autophagic responses to Bcl-2 inhibition and photodamage. Photochem Photobiol Sci 6:1290–1295PubMedCrossRefGoogle Scholar
  17. Kessel D, Vicente MG, Reiners JJ Jr (2006) Initiation of apoptosis and autophagy by photodynamic therapy. Lasers Surg Med 38:482–488PubMedCrossRefGoogle Scholar
  18. Krohn KA, Mankoff DA, Muzi M, Link JM, Spence AM (2005) True tracers: comparing FDG with glucose and FLT with thymidine. Nucl Med Biol 32(7):663–671PubMedCrossRefGoogle Scholar
  19. Lapointe D, Brasseur N, Cadorette J, La Madeleine C, Rodrigue S, van Lier JE, Lecomte R (1999) High-resolution PET imaging for in vivo monitoring of tumor response after photodynamic therapy in mice. J Nucl Med 40:876–882PubMedGoogle Scholar
  20. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, Knopp EA, Zagzag D (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998PubMedGoogle Scholar
  21. Li Y, Chen AP, Crane JC, Chang SM, Vigneron DB, Nelson SJ (2007) Three-dimensional J-resolved H-1 magnetic resonance spectroscopic imaging of volunteers and patients with brain tumors at 3 T. Magn Reson Med 58:886–892PubMedCrossRefGoogle Scholar
  22. Lopata RG, Backes WH, van den Bosch PP, van Riel NA (2007) On the identifiability of pharma-cokinetic parameters in dynamic contrast-enhanced imaging. Magn Reson Med 58:425–429PubMedCrossRefGoogle Scholar
  23. Moore JV, Waller ML, Zhao S, Dodd NJ, Acton PD, Jeavons AP, Hastings D (1998) Feasibility of imaging photodynamic injury to tumours by high-resolution positron emission tomography. Eur J Nucl Med 25:1248–1254PubMedCrossRefGoogle Scholar
  24. Oleinick NL, Morris RL, Belichenko I (2002) Apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1:1–21PubMedCrossRefGoogle Scholar
  25. Pandey SK, Gryshuk AL, Sajjad M, Zheng X, Chen Y, Abouzeid MM, Morgan J, Charamisinau I, Nabi HA, Oseroff A, Pandey RK (2005) Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible “see and treat” approach. J Med Chem 48:6286–6295PubMedCrossRefGoogle Scholar
  26. Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, Rosenblum ML, Mikkelsen T (2002) Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 51:912–919, discussion 919–920PubMedCrossRefGoogle Scholar
  27. Sijens PE, Bovée WM, Seijkens D, Los G, Rutgers DH (1986) In vivo 31P-nuclear magnetic resonance study of the response of a murine mammary tumor to different doses of gamma-radiation. Cancer Res 46(3):1427–1432PubMedGoogle Scholar
  28. Tait JF (2008) Imaging of apoptosis. J Nucl Med 49(10):1573–1576PubMedCrossRefGoogle Scholar
  29. Tait JF, Smith C, Levashova Z, Patel B, Blankenberg FG, Vanderheyden JL (2006) Improved detection of cell death in vivo with annexin V radiolabeled by site-specific methods. J Nucl Med 47:1546–1553. Comment in: J Nucl Med 47:1400–1402PubMedGoogle Scholar
  30. Tofts PS, Kermode AG (1991) Measurement of the blood—brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367PubMedCrossRefGoogle Scholar
  31. Varghai D, Cross N, Spring-Robinson C, Sharma R, Feyes DK, Ahmad Y, Oleinick NL, Muzic RF Jr, Dean D (2007) Monitoring Pc 4-mediated photodynamic therapy of U87 tumors with F18-fluorodeoxy-glucose PET imaging in the athymic nude rat. In: Kollias N, Choi B, Zeng H, Malek RS, Wong BJ, Ilgner JFR, Gregory KW, Tearney GJ, Hirschberg H, Madsen SJ (eds) Proceedings of Photonics West 2007: Photonic Therapeutics and Diagnostics III (SPIE 6424). SPIE, Bellingham, WA, pp 64242G1–64242G7Google Scholar
  32. Varghai D, Covey K, Sharma R, Cross N, Feyes DK, Oleinick NL, Flask CA, Dean D (2008) Monitoring Pc 4-mediated photodynamic therapy of U87 tumors with dynamic contrast enhanced-magnetic Resonance imaging (DCE-MRI) in the athymic nude rat. In: Kollias N, Choi B, Zeng H, Malek RS, Wong BJ, Ilgner JFR, Gregory KW, Tearney GJ, Hirschberg H, Madsen SJ (eds) Proceedings of Photonics West 2008: Photonic Therapeutics and Diagnostics IV (SPIE 6842). SPIE, Bellingham, WA, pp 68422P1–68422P9Google Scholar
  33. Wang H, Van de Putte M, Chen F, De Keyzer F, Jin L, Yu J, Marchal G, de Witte P, Ni Y (2008a) Murine liver implantation of radiation-induced fibrosarcoma: characterization with MR imaging, microangiography and histopathology. Eur Radiol 18(7):1422–1430CrossRefGoogle Scholar
  34. Xue LY, Chiu SM, Azizuddin K, Joseph S, Oleinick NL (2007) The death of human cancer cells following photodynamic therapy: apoptosis competence is necessary for Bcl-2 protection but not for induction of autophagy. Photochem Photobiol 83:1016–1023PubMedCrossRefGoogle Scholar
  35. Zilberstein J, Schreiber S, Bloemers MC, Bendel P, Neeman M, Schechtman E, Kohen F, Scherz A, Salomon Y (2001) Antivascular treatment of solid melanoma tumors with bacteriochlorophyll-serine-based photodynamic therapy. Photochem Photobiol 73:257–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • David Dean
    • 1
  • Nathan Cross
    • 1
  • Davood Varghai
    • 1
  • Nancy L. Oleinick
    • 1
  • Chris A. Flask
    • 1
  1. 1.Department of Neurological Surgery and Case Comprehensive Cancer CenterCase Western Reserve UniversityClevelandUSA

Personalised recommendations