Advertisement

Advanced Experimental Magnetic Resonance Imaging

  • Ursula I. TuorEmail author

Abstract

Magnetic resonance imaging (MRI) is a noninvasive imaging technique with an extensive range of applications in biomedical diagnostic imaging. This chapter reviews selected aspects of advanced experimental MRI with a focus on brain imaging using animal MRI systems and their application to improving understanding of the pathophysiology of the brain. Anatomical MRI is advancing diagnostic applications through the increased use of quantitative morphology and MR relaxation times. Microscopic imaging is progressing with improvements in spatial resolution. Diffusion MRI imaging continues to enhance the information it provides on tissue and cellular or axonal structure using diffusion tensor imaging and diffusion tensor tractography. Magnetization transfer imaging is also providing supplementary information on pathophysiological changes in tissue, particularly white matter. Functional MRI in animals in conjunction with other invasive methods has improved our understanding of the fMRI response. Molecular MRI is a rapidly growing field that holds promise for the noninvasive imaging of molecular cellular processes using targeted or responsive contrast agents.

Keywords

Diffusion Tensor Imaging Blood Oxygenation Level Dependent Magn Reson Image Functional Magnetic Resonance Imaging Magnetization Transfer Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aime S, Carrera C, Delli CD, Geninatti CS, Terreno E (2005) Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl 44:1813–1815PubMedCrossRefGoogle Scholar
  2. Albayrak B, Samdani AF, Black PM (2004) Intra-operative magnetic resonance imaging in neurosurgery. Acta Neurochir (Wien) 146:543–556CrossRefGoogle Scholar
  3. Bagnato F, Ohayon JM, Ehrmantraut M, Chiu AW, Riva M, Ikonomidou VN (2006) Clinical and imaging metrics for monitoring disease progression in patients with multiple sclerosis. Expert Rev Neurother 6:599–612PubMedCrossRefGoogle Scholar
  4. Bammer R, Skare S, Newbould R, Liu C, Thijs V, Ropele S, Clayton DB, Krueger G, Moseley ME, Glover GH (2005) Foundations of advanced magnetic resonance imaging. NeuroRx 2:167–196PubMedCrossRefGoogle Scholar
  5. Barber PA, Foniok T, Kirk D, Buchan AM, Laurent S, Boutry S, Muller RN, Hoyte L, Tomanek B, Tuor UI (2004) MR molecular imaging of early endothelial activation in focal ischemia. Ann Neurol 56:116–120PubMedCrossRefGoogle Scholar
  6. Barbier EL, Liu L, Grillon E, Payen JF, Lebas JF, Segebarth C, Remy C (2005) Focal brain ischemia in rat: acute changes in brain tissue T1 reflect acute increase in brain tissue water content. NMR Biomed 18:499–506PubMedCrossRefGoogle Scholar
  7. Benveniste H, Blackband SJ (2006) Translational neuroscience and magnetic-resonance microscopy. Lancet Neurol 5:536–544PubMedCrossRefGoogle Scholar
  8. Benveniste H, Ma Y, Dhawan J, Gifford A, Smith SD, Feinstein I, Du C, Grant SC, Hof PR (2007) Anatomical and functional phenotyping of mice models of Alzheimer's disease by MR microscopy. Ann NY Acad Sci 1097:12–29PubMedCrossRefGoogle Scholar
  9. Blezer EL, Bauer J, Brok HP, Nicolay K, 't Hart BA (2007) Quantitative MRI—pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR Biomed 20:90–103PubMedCrossRefGoogle Scholar
  10. Bockhorst KH, Narayana PA, Liu R, Hobila-Vijjula P, Ramu J, Kamel M, Wosik J, Bockhorst T, Hahn K, Hasan KM, Perez-Polo JR (2008) Early postnatal development of rat brain: In vivo diffusion tensor imaging. J Neurosci Res 86(7):1520–1528PubMedCrossRefGoogle Scholar
  11. Borsook D, Becerra LR (2006) Breaking down the barriers: fMRI applications in pain, analgesia and analgesics. Mol Pain 2:30PubMedCrossRefGoogle Scholar
  12. Borsook D, Becerra L (2007) Phenotyping central nervous system circuitry in chronic pain using functional MRI: considerations and potential implications in the clinic. Curr Pain Headache Rep 11:201–207PubMedCrossRefGoogle Scholar
  13. Borsook D, Becerra L, Hargreaves R (2006) A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 5:411–424PubMedCrossRefGoogle Scholar
  14. Boulby PA, Rugg-Gunn J (2003) T2: the transverse relaxation time. In: Tofts P (ed) Quantitative MRI of the brain. Wiley, Chichester, pp 143–201CrossRefGoogle Scholar
  15. Briley-Saebo KC, Mulder WJ, Mani V, Hyafil F, Amirbekian V, Aguinaldo JG, Fisher EA, Fayad ZA (2007) Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes. J Magn Reson Imaging 26:460–479PubMedCrossRefGoogle Scholar
  16. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523PubMedCrossRefGoogle Scholar
  17. Chin CL, Pauly JR, Surber BW, Skoubis PD, McGaraughty S, Hradil VP, Luo Y, Cox BF, Fox GB (2008) Pharmacological MRI in awake rats predicts selective binding of α4, β2 nicotinic receptors. Synapse 62:159–168PubMedCrossRefGoogle Scholar
  18. Colonnese MT, Phillips MA, Constantine-Paton M, Kaila K, Jasanoff A (2008) Development of hemodynamic responses and functional connectivity in rat somatosensory cortex. Nat Neurosci 11:72–79PubMedCrossRefGoogle Scholar
  19. Crosson B, McGregor K, Gopinath KS, Conway TW, Benjamin M, Chang YL, Moore AB, Raymer AM, Briggs RW, Sherod MG, Wierenga CE, White KD (2007) Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol Rev 17:157–177PubMedCrossRefGoogle Scholar
  20. Dauguet J, Peled S, Berezovskii V, Delzescaux T, Warfield SK, Born R, Westin CF (2007) Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage 37:530–538PubMedCrossRefGoogle Scholar
  21. de Zwart JA, van GP, Golay X, Ikonomidou VN, Duyn JH (2006) Accelerated parallel imaging for functional imaging of the human brain. NMR Biomed 19:342–351PubMedCrossRefGoogle Scholar
  22. Di MM, Sadun C, Port M, Guilbert I, Couvreur P, Dubernet C (2007) Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int J Nanomedicine 2:609–622Google Scholar
  23. Dijkhuizen RM (2006) Application of magnetic resonance imaging to study pathophysiology in brain disease models. Methods Mol Med 124:251–278PubMedGoogle Scholar
  24. Doty FD, Entzminger G, Kulkarni J, Pamarthy K, Staab JP (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20:304–325PubMedCrossRefGoogle Scholar
  25. Driehuys B, Nouls J, Badea A, Bucholz E, Ghaghada K, Petiet A, Hedlund LW (2008) Small animal imaging with magnetic resonance microscopy. ILAR J 49:35–53PubMedGoogle Scholar
  26. Dubois J, Benders M, Cachia A, Lazeyras F, HaVinh LR, Sizonenko SV, Borradori-Tolsa C, Mangin JF, Huppi PS (2007) Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex 18(6):1444–1454PubMedCrossRefGoogle Scholar
  27. Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomed 1:157–168PubMedCrossRefGoogle Scholar
  28. Duong TQ (2006) Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats. Brain Res 1135(1):186–194Google Scholar
  29. Engelbrecht V, Rassek M, Preiss S, Wald C, Modder U (1998) Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR Am J Neuroradiol 19:1923–1929PubMedGoogle Scholar
  30. Ferris CF, Febo M, Luo F, Schmidt K, Brevard M, Harder JA, Kulkarni P, Messenger T, King JA (2006) Functional magnetic resonance imaging in conscious animals: a new tool in behavioural neuroscience research. J Neuroendocrinol 18:307–318PubMedCrossRefGoogle Scholar
  31. Filippi M, Agosta F (2007) Magnetization transfer MRI in multiple sclerosis. J Neuroimaging 17(Suppl 1):22S–26SPubMedCrossRefGoogle Scholar
  32. Fujita H (2007) New horizons in MR technology: RF coil designs and trends. Magn Reson Med Sci 6:29–42PubMedCrossRefGoogle Scholar
  33. Gilad AA, Winnard PT Jr, Van Zijl PC, Bulte JW (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20:275–290PubMedCrossRefGoogle Scholar
  34. Gochberg DF, Gore JC (2007) Quantitative magnetization transfer imaging via selective inversion recovery with short repetition times. Magn Reson Med 57:437–441PubMedCrossRefGoogle Scholar
  35. Gowland PA, Stevenson VL (2003) T1: The longitudinal relaxation time. In: Tofts P (ed) Quantitative MRI of the brain. Wiley, Chichester, pp 111–141CrossRefGoogle Scholar
  36. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2:23–39PubMedCrossRefGoogle Scholar
  37. Haku T, Miyasaka N, Kuroiwa T, Kubota T, Aso T (2006) Transient ADC change precedes persistent neuronal death in hypoxic-ischemic model in immature rats. Brain Res 19(1100):136–141CrossRefGoogle Scholar
  38. Heckl S (2007) Future contrast agents for molecular imaging in stroke. Curr Med Chem 14:1713–1728PubMedCrossRefGoogle Scholar
  39. Horsfield MA (2005) Magnetization transfer imaging in multiple sclerosis. J Neuroimaging 15:58S–67SPubMedCrossRefGoogle Scholar
  40. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, Van Zijl PC, Mori S (2008) Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39:336–347PubMedCrossRefGoogle Scholar
  41. Huppi PS, Dubois J (2006) Diffusion tensor imaging of brain development. Semin Fetal Neonatal Med 11:489–497PubMedCrossRefGoogle Scholar
  42. Huttunen JK, Grohn O, Penttonen M (2008) Coupling between simultaneously recorded BOLD response and neuronal activity in the rat somatosensory cortex. Neuroimage 39:775–785PubMedCrossRefGoogle Scholar
  43. Jack CR Jr, Marjanska M, Wengenack TM, Reyes DA, Curran GL, Lin J, Preboske GM, Poduslo JF, Garwood M (2007) Magnetic resonance imaging of Alzheimer's pathology in the brains of living transgenic mice: a new tool in Alzheimer's disease research. Neuroscientist 13:38–48PubMedCrossRefGoogle Scholar
  44. Jezzard P, Buxton RB (2006) The clinical potential of functional magnetic resonance imaging. J Magn Reson Imaging 23:787–793PubMedCrossRefGoogle Scholar
  45. Johnson GA, li-Sharief A, Badea A, Brandenburg J, Cofer G, Fubara B, Gewalt S, Hedlund LW, Upchurch L (2007) High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. Neuroimage 37:82–89PubMedCrossRefGoogle Scholar
  46. Katscher U, Bornert P (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400PubMedCrossRefGoogle Scholar
  47. Laatsch L (2007) The use of functional MRI in traumatic brain injury diagnosis and treatment. Phys Med Rehabil Clin N Am 18:69–85, viPubMedGoogle Scholar
  48. Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A (2007) Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage 40(2):515–528PubMedCrossRefGoogle Scholar
  49. Laule C, Vavasour IM, Kolind SH, Li DK, Traboulsee TL, Moore GR, MacKay AL (2007) Magnetic resonance imaging of myelin. Neurotherapeutics 4:460–484PubMedCrossRefGoogle Scholar
  50. Liu CH, Huang S, Cui J, Kim YR, Farrar CT, Moskowitz MA, Rosen BR, Liu PK (2007a) MR contrast probes that trace gene transcripts for cerebral ischemia in live animals. FASEB J 21:3004–3015CrossRefGoogle Scholar
  51. Liu CH, Kim YR, Ren JQ, Eichler F, Rosen BR, Liu PK (2007b) Imaging cerebral gene transcripts in live animals. J Neurosci 27:713–722CrossRefGoogle Scholar
  52. Liu G, Li Y, Pagel MD (2007c) Design and characterization of a new irreversible responsive PARACEST MRI contrast agent that detects nitric oxide. Magn Reson Med 58:1249–1256CrossRefGoogle Scholar
  53. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRefGoogle Scholar
  54. Lorusso V, Pascolo L, Fernetti C, Anelli PL, Uggeri F, Tiribelli C (2005) Magnetic resonance contrast agents: from the bench to the patient. Curr Pharm Des 11:4079–4098PubMedCrossRefGoogle Scholar
  55. Lowe AS, Barker GJ, Beech JS, Ireland MD, Williams SC (2008) A method for removing global effects in small-animal functional MRI. NMR Biomed 21:53–58PubMedCrossRefGoogle Scholar
  56. MacDonald CL, Dikranian K, Bayly P, Holtzman D, Brody D (2007) Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J Neurosci 27:11869–11876CrossRefGoogle Scholar
  57. Magnitsky S, Walton RM, Wolfe JH, Poptani H (2007) Magnetic resonance imaging as a tool for monitoring stem cell migration. Neurodegener Dis 4:314–321PubMedCrossRefGoogle Scholar
  58. Majcher K, Tomanek B, Tuor UI, Jasinski A, Foniok T, Rushforth D, Hess G (2007) Functional magnetic resonance imaging within the rat spinal cord following peripheral nerve injury. Neuroimage 38:669–676PubMedCrossRefGoogle Scholar
  59. Makris N, Caviness VS, Kennedy DN (2005) An introduction to MR imaging-based stroke morphometry. Neuroimaging Clin N Am 15:325–39, xPubMedCrossRefGoogle Scholar
  60. Masamoto K, Kim T, Fukuda M, Wang P, Kim SG (2007) Relationship between neural, vascular, and BOLD signals in isoflurane-anesthetized rat somatosensory cortex. Cereb Cortex 17:942–950PubMedCrossRefGoogle Scholar
  61. Matthews PM, Honey GD, Bullmore ET (2006) Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 7:732–744PubMedCrossRefGoogle Scholar
  62. May A, Matharu M (2007) New insights into migraine: application of functional and structural imaging. Curr Opin Neurol 20:306–309PubMedCrossRefGoogle Scholar
  63. McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2:153–167PubMedCrossRefGoogle Scholar
  64. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51:527–539PubMedCrossRefGoogle Scholar
  65. Mori S, Zhang J, Bulte JW (2006) Magnetic resonance microscopy of mouse brain development. Methods Mol Med 124:129–147PubMedGoogle Scholar
  66. Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164PubMedCrossRefGoogle Scholar
  67. Mulder WJ, Griffioen AW, Strijkers GJ, Cormode DP, Nicolay K, Fayad ZA (2007) Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomed 2:307–324PubMedCrossRefGoogle Scholar
  68. Nair DG (2005) About being BOLD. Brain Res Brain Res Rev 50:229–243PubMedGoogle Scholar
  69. Neeb H, Zilles K, Shah NJ (2006) Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI. Neuroimage 29:910–922PubMedCrossRefGoogle Scholar
  70. Neema M, Stankiewicz J, Arora A, Guss ZD, Bakshi R (2007) MRI in multiple sclerosis: what's inside the toolbox? Neurotherapeutics 4:602–617PubMedCrossRefGoogle Scholar
  71. Negus SS, Vanderah TW, Brandt MR, Bilsky EJ, Becerra L, Borsook D (2006) Preclinical assessment of candidate analgesic drugs: recent advances and future challenges. J Pharmacol Exp Ther 319:507–514PubMedCrossRefGoogle Scholar
  72. Neil JJ (2008) Diffusion imaging concepts for clinicians. J Magn Reson Imaging 27:1–7PubMedCrossRefGoogle Scholar
  73. Nieman BJ, Bishop J, Dazai J, Bock NA, Lerch JP, Feintuch A, Chen XJ, Sled JG, Henkelman RM (2007) MR technology for biological studies in mice. NMR Biomed 20:291–303PubMedCrossRefGoogle Scholar
  74. Norris DG (2006) Principles of magnetic resonance assessment of brain function. J Magn Reson Imaging 23:794–807PubMedCrossRefGoogle Scholar
  75. Nucifora PG, Verma R, Lee SK, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245:367–384PubMedCrossRefGoogle Scholar
  76. Ohliger MA, Sodickson DK (2006) An introduction to coil array design for parallel MRI. NMR Biomed 19:300–315PubMedCrossRefGoogle Scholar
  77. Pelletier D, Garrison K, Henry R (2004) Measurement of whole-brain atrophy in multiple sclerosis. J Neuroimaging 14:11S–19SPubMedCrossRefGoogle Scholar
  78. Pirko I, Johnson AJ (2008) Neuroimaging of demyelination and remyeli-nation models. Curr Top Microbiol Immunol 318:241–266PubMedCrossRefGoogle Scholar
  79. Qiao M, Malisza KL, Del Bigio MR, Tuor UI (2001) Correlation of cerebral hypoxic-ischemic T2 changes with tissue alterations in water content and protein extravasation. Stroke 32:958–963PubMedGoogle Scholar
  80. Qiao M, Latta P, Meng S, Tomanek B, Tuor UI (2004) Development of acute edema following cerebral hypoxia-ischemia in neonatal compared with juvenile rats using magnetic resonance imaging. Pediatr Res 55:101–106PubMedCrossRefGoogle Scholar
  81. Qiao M, Rushforth D, Wang R, Shaw RA, Tomanek B, Dunn JF, Tuor UI (2006) Blood-oxygen-level-dependent magnetic resonance signal and cerebral oxygenation responses to brain activation are enhanced by concurrent transient hypertension in rats. J Cereb Blood Flow Metab 27:1280–1289PubMedCrossRefGoogle Scholar
  82. Ritter P, Villringer A (2006) Simultaneous EEG-fMRI. Neurosci Biobehav Rev 30:823–838PubMedCrossRefGoogle Scholar
  83. Roberts TP, Mikulis D (2007) Neuro MR: principles. J Magn Reson Imaging 26:823–837PubMedCrossRefGoogle Scholar
  84. Schonberg T, Pianka P, Hendler T, Pasternak O, Assaf Y (2006) Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 30:1100–1111PubMedCrossRefGoogle Scholar
  85. Sosnovik DE, Weissleder R (2007) Emerging concepts in molecular MRI. Curr Opin Biotechnol 18:4–10PubMedCrossRefGoogle Scholar
  86. Sosnovik DE, Nahrendorf M, Weissleder R (2007) Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 115:2076–2086PubMedCrossRefGoogle Scholar
  87. Sotak CH (2004) Nuclear magnetic resonance (NMR) measurement of the apparent diffusion coefficient (ADC) of tissue water and its relationship to cell volume changes in pathological states. Neurochem Int 45:569–582PubMedCrossRefGoogle Scholar
  88. Sperling R (2007) Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer's disease. Ann N Y Acad Sci 1097:146–155PubMedCrossRefGoogle Scholar
  89. Staempfli P, Reischauer C, Jaermann T, Valavanis A, Kollias S, Boesiger P (2008) Combining fMRI and DTI: a framework for exploring the limits of fMRI-guided DTI fiber tracking and for verifying DTI-based fiber tractography results. Neuroimage 39:119–126PubMedCrossRefGoogle Scholar
  90. Strijkers GJ, Mulder WJ, van Tilborg GA, Nicolay K (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7:291–305PubMedCrossRefGoogle Scholar
  91. Talos IF, Mian AZ, Zou KH, Hsu L, Goldberg-Zimring D, Haker S, Bhagwat JG, Mulkern RV (2006) Magnetic resonance and the human brain: anatomy, function and metabolism. Cell Mol Life Sci 63:1106–1124PubMedCrossRefGoogle Scholar
  92. Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38PubMedCrossRefGoogle Scholar
  93. Tofts P, Steens SCA, van Buchem MA (2003) MT: magnetization transfer. In: Tofts P (ed) Quantitative MRI of the brain. Wiley, Chichester, pp 257–298CrossRefGoogle Scholar
  94. Tuor UI, McKenzie E, Bascaramurty S, Campbell M, Foniok T, Latta P, Tomanek B (2001) Functional imaging of the early and late response to noxious formalin injection in rats and the potential role of blood pressure changes. Proc ISMRM 2001:1344Google Scholar
  95. Tuor UI, Wang R, Zhao Z, Foniok T, Rushforth D, Wamsteeker JI, Qiao M (2007) Transient hypertension concurrent with forepaw stimulation enhances functional MRI responsiveness in infarct and peri-infarct regions. J Cereb Blood Flow Metab 27:1819–1829PubMedCrossRefGoogle Scholar
  96. Tuor UI, Meng S, Qiao M, Webster N, Crowley S, Foniok T (2008) Progression of magnetization transfer ratio changes following cerebral hypoxia-ischemia in neonatal rats: comparison of mild and moderate injury methods [abstract]. Proc ISMRM 2008:Abstract 64Google Scholar
  97. Vasalatiy O, Gerard RD, Zhao P, Sun X, Sherry AD (2008) Labeling of Adenovirus Particles with PARACEST Agents. Bioconjug Chem 19:598–606PubMedCrossRefGoogle Scholar
  98. Wang R, Foniok T, Wamsteeker JI, Qiao M, Tomanek B, Vivanco RA, Tuor UI (2006) Transient blood pressure changes affect the functional magnetic resonance imaging detection of cerebral activation. Neuroimage 31:1–11PubMedCrossRefGoogle Scholar
  99. Ward NS (2006) The neural substrates of motor recovery after focal damage to the central nervous system. Arch Phys Med Rehabil 87:S30–S35PubMedCrossRefGoogle Scholar
  100. Weber R, Ramos-Cabrer P, Hoehn M (2006a) Present status of magnetic resonance imaging and spectroscopy in animal stroke models. J Cereb Blood Flow Metab 26:591–604CrossRefGoogle Scholar
  101. Weber R, Ramos-Cabrer P, Wiedermann D, van CN, Hoehn M (2006b) A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 29:1303–1310CrossRefGoogle Scholar
  102. Weber R, Ramos-Cabrer P, Justicia C, Wiedermann D, Strecker C, Sprenger C, Hoehn M (2008) Early prediction of functional recovery after experimental stroke: functional magnetic resonance imaging, electro-physiology, and behavioral testing in rats. J Neurosci 28:1022–1029PubMedCrossRefGoogle Scholar
  103. Weiller C, May A, Sach M, Buhmann C, Rijntjes M (2006) Role of functional imaging in neurological disorders. J Magn Reson Imaging 23:840–850PubMedCrossRefGoogle Scholar
  104. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33–44PubMedCrossRefGoogle Scholar
  105. Wheeler-Kingshott CAM, Barker GJ, Steens SCA, van Buchem MA (2003) D: the diffusion of water. In: Tofts P (ed) Quantitative MRI of the brain. Wiley, Chichester, pp 203–256CrossRefGoogle Scholar
  106. Whitwell JL, Jack CR Jr (2005) Comparisons between Alzheimer disease, frontotemporal lobar degeneration, and normal aging with brain mapping. Top Magn Reson Imaging 16:409–425PubMedCrossRefGoogle Scholar
  107. Winter PM, Cai K, Chen J, Adair CR, Kiefer GE, Athey PS, Gaffney PJ, Buff CE, Robertson JD, Caruthers SD, Wickline SA, Lanza GM (2006) Targeted PARACEST nanoparticle contrast agent for the detection of fibrin. Magn Reson Med 56:1384–1388PubMedCrossRefGoogle Scholar
  108. Woods M, Woessner DE, Sherry AD (2006) Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem Soc Rev 35:500–511PubMedCrossRefGoogle Scholar
  109. Wozniak JR, Lim KO (2006) Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neurosci Biobehav Rev 30:762–774PubMedCrossRefGoogle Scholar
  110. Xydis V, Astrakas L, Drougia A, Gassias D, Andronikou S, Argyropoulou M (2006) Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio. Pediatr Radiol 36:934–939PubMedCrossRefGoogle Scholar
  111. Yoo B, Pagel MD (2008) An overview of responsive MRI contrast agents for molecular imaging. Front Biosci 13:1733–1752PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute for Biodiagnostics (West), National Research Council of Canada, Experimental Imaging Centre, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada

Personalised recommendations