Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

Signalling of cGK (cGMP-dependent protein kinases) are mediated through phosphorylation of specific substrates. Several substrates of cGKI and cGKII were identified meanwhile. Some cGKI substrates are specifically regulated by the cGKIα or the cGKIβ isozyme. In various cells and tissues, different cGK substrates exist that are essential for the regulation of diverse functions comprising tissue contractility, cell motility, cell contact, cellular secretion, cell proliferation, and cell differentiation. On the molecular level, cGKI substrates fulfill various cellular functions regulating e.g. the intracellular calcium and potassium concentration, the calcium sensitivity, and the organisation of the intracellular cytoskeleton. cGKII substrates are involved e.g. in chloride transport, sodium/proton transport and transcriptional regulation. The understanding of cGK signalling and function depends strongly on the identification of further specific substrates. In the last years, diverse approaches ranging from biochemistry to genetic deletion lead to the identification and establishment of several substrates, which raised new insights in the molecular mechanisms of cGK functions and elucidated new cellular cGK functions. However, the analysis of the dynamic signalling of cGK in tissues and cells will be necessary to discover new signalling pathways and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16:2813–2828

    PubMed  CAS  Google Scholar 

  • Alverdi V, Mazon H, Versluis C, Hemrika W, Esposito G, van den Heuvel R, Scholten A, Heck AJ (2008) cGMP-binding prepares PKG for substrate binding by disclosing the C-terminal domain. J Mol Biol 375:1380–1393

    PubMed  CAS  Google Scholar 

  • Ammendola A, Geiselhoringer A, Hofmann F, Schlossmann J (2001) Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase sub strate (IRAG) and cGMP kinase Ibeta. J Biol Chem 276:24153–24159

    PubMed  CAS  Google Scholar 

  • Andric SA, Janjic MM, Stojkov NJ, Kostic TS (2007) Protein kinase G-mediated stimulation of basal Leydig cell steroidogenesis. Am J Physiol Endocrinol Metab 293:E1399–1408

    PubMed  CAS  Google Scholar 

  • Antl M, von Bruhl ML, Eiglsperger C, Werner M, Konrad I, Kocher T, Wilm M, Hofmann F, Massberg S, Schlossmann J (2007) IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood 109:552–559

    PubMed  CAS  Google Scholar 

  • Aszodi A, Pfeifer A, Ahmad M, Glauner M, Zhou XH, Ny L, Andersson KE, Kehrel B, Offermanns S, Fassler R (1999) The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dis pensable for smooth muscle function. EMBO J 18:37–48

    PubMed  CAS  Google Scholar 

  • Bansal G, Druey KM, Xie Z (2007) R4 RGS proteins: regulation of G-protein signaling and be yond. Pharmacol Ther 116:473–495

    PubMed  CAS  Google Scholar 

  • Bessay EP, Blount MA, Zoraghi R, Beasley A, Grimes KA, Francis SH, Corbin JD (2008) Phos phorylation increases affinity of the phosphodiesterase-5 catalytic site for tadalafil. J Pharmacol Exp Ther 325:62–68

    PubMed  CAS  Google Scholar 

  • Borman MA, MacDonald JA, Haystead TA (2004) Modulation of smooth muscle contractility by CHASM, a novel member of the smoothelin family of proteins. FEBS Lett 573:207–213

    PubMed  CAS  Google Scholar 

  • Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, Ausiello DA, Brown D (2000) Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest 106:1115–1126

    PubMed  CAS  Google Scholar 

  • Broderick KE, Zhang T, Rangaswami H, Zeng Y, Zhao X, Boss GR, Pilz RB (2007) Guano sine 3′, 5′-cyclic monophosphate (cGMP)/cGMP-dependent protein kinase induce interleukin-6 transcription in osteoblasts. Mol Endocrinol 21:1148–1162

    PubMed  CAS  Google Scholar 

  • Burkhardt M, Glazova M, Gambaryan S, Vollkommer T, Butt E, Bader B, Heermeier K, Lincoln TM, Walter U, Palmetshofer A (2000) KT5823 inhibits cGMP-dependent protein ki nase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem 275:33536–33541

    PubMed  CAS  Google Scholar 

  • Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J, Walter U (1994) cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269:14509–14517

    PubMed  CAS  Google Scholar 

  • Calo LA, Pagnin E, Davis PA, Sartori M, Ceolotto G, Pessina AC, Semplicini A (2004) Increased expression of regulator of G protein signaling-2 (RGS-2) in Bartter's/Gitelman's syndrome. A role in the control of vascular tone and implication for hypertension. J Clin Endocrinol Metab 89:4153–4157

    PubMed  CAS  Google Scholar 

  • Caron KM, Soo SC, Wetsel WC, Stocco DM, Clark BJ, Parker KL (1997) Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia. Proc Natl Acad Sci U S A 94:11540–11545

    PubMed  CAS  Google Scholar 

  • Casteel DE, Boss GR, Pilz RB (2005) Identification of the interface between cGMP-dependent protein kinase Ibeta and its interaction partners TFII-I and IRAG reveals a common interaction motif. J Biol Chem 280:38211–38218

    PubMed  CAS  Google Scholar 

  • Casteel DE, Zhang T, Zhuang S, Pilz RB (2008) cGMP-dependent protein kinase anchoring by IRAG regulates its nuclear translocation and transcriptional activity. Cell Signal 20:1392–1399

    PubMed  CAS  Google Scholar 

  • Casteel DE, Zhuang S, Gudi T, Tang J, Vuica M, Desiderio S, Pilz RB (2002) cGMP-dependent protein kinase I beta physically and functionally interacts with the transcriptional regulator TFII-I. J Biol Chem 277:32003–32014

    PubMed  CAS  Google Scholar 

  • Cavallini L, Coassin M, Borean A, Alexandre A (1996) Prostacyclin and sodium nitroprusside inhibit the activity of the platelet inositol 1,4,5-trisphosphate receptor and promote its phos-phorylation. J Biol Chem 271:5545–5551

    PubMed  CAS  Google Scholar 

  • Cha B, Kim JH, Hut H, Hogema BM, Nadarja J, Zizak M, Cavet M, Lee-Kwon W, Lohmann SM, Smolenski A, Tse CM, Yun C, de Jonge HR, Donowitz M (2005) cGMP inhibition of Na+/H+ antiporter 3 (NHE3) requires PDZ domain adapter NHERF2, a broad specificity protein kinase G-anchoring protein. J Biol Chem 280:16642–16650

    PubMed  CAS  Google Scholar 

  • Chang DF, Belaguli NS, Chang J, Schwartz RJ (2007) LIM-only protein, CRP2, switched on smooth muscle gene activity in adult cardiac myocytes. Proc Natl Acad Sci U S A 104:157–162

    PubMed  CAS  Google Scholar 

  • Chen H, Levine YC, Golan DE, Michel T, Lin AJ (2008) Atrial natriuretic peptide-initiated cGMP pathways regulate vasodilator-stimulated phosphoprotein phosphorylation and angiogenesis in vascular endothelium. J Biol Chem 283:4439–4447

    PubMed  CAS  Google Scholar 

  • Chen L, Daum G, Chitaley K, Coats SA, Bowen-Pope DF, Eigenthaler M, Thumati NR, Walter U, Clowes AW (2004) Vasodilator-stimulated phosphoprotein regulates proliferation and growth inhibition by nitric oxide in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 24:1403–1408

    PubMed  CAS  Google Scholar 

  • Chikuda H, Kugimiya F, Hoshi K, Ikeda T, Ogasawara T, Shimoaka T, Kawano H, Kamekura S, Tsuchida A, Yokoi N, Nakamura K, Komeda K, Chung UI, Kawaguchi H (2004) Cyclic GMP-dependent protein kinase II is a molecular switch from proliferation to hypertrophic differenti ation of chondrocytes. Genes Dev 18:2418–2429

    PubMed  CAS  Google Scholar 

  • Corbin JD, Turko IV, Beasley A, Francis SH (2000) Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding ac tivities. Eur J Biochem 267:2760–2767

    PubMed  CAS  Google Scholar 

  • Danielewski O, Schultess J, Smolenski A (2005) The NO/cGMP pathway inhibits Rap 1 activation in human platelets via cGMP-dependent protein kinase I. Thromb Haemost 93:319–325

    PubMed  CAS  Google Scholar 

  • Dazert S, Schick B, Hartensuer R, Volkenstein S, Aletsee C, Hansen S, Shehata-Dieler WE, Eigenthaler M, Walter U, Ryan AF, Brors D (2007) Hearing development and spiral ganglion neurite growth in VASP deficient mice. Brain Res 1178:73–82

    PubMed  CAS  Google Scholar 

  • Donald RG, Allocco J, Singh SB, Nare B, Salowe SP, Wiltsie J, Liberator PA (2002) Toxoplasma gondii cyclic GMP-dependent kinase: chemotherapeutic targeting of an essential parasite pro tein kinase. Eukaryot Cell 1:317–328

    PubMed  CAS  Google Scholar 

  • Donald RG, Zhong T, Wiersma H, Nare B, Yao D, Lee A, Allocco J, Liberator PA (2006) Anticoc cidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-dependent protein kinase. Mol Biochem Parasitol 149:86–98

    PubMed  CAS  Google Scholar 

  • Donowitz M, Cha B, Zachos NC, Brett CL, Sharma A, Tse CM, Li X (2005) NHERF family and NHE3 regulation. J Physiol 567:3–11

    PubMed  CAS  Google Scholar 

  • Dostmann WR, Nickl C, Thiel S, Tsigelny I, Frank R, Tegge WJ (1999) Delineation of selective cyclic GMP-dependent protein kinase Ialpha substrate and inhibitor peptides based on combi natorial peptide libraries on paper. Pharmacol Ther 82:373–387

    PubMed  CAS  Google Scholar 

  • Ellerbroek SM, Wennerberg K, Burridge K (2003) Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 278:19023–19031

    PubMed  CAS  Google Scholar 

  • Endo S, Nairn AC, Greengard P, Ito M (2003) Thr123 of rat G-substrate contributes to its action as a protein phosphatase inhibitor. Neurosci Res 45:79–89

    PubMed  CAS  Google Scholar 

  • Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol 184:529–560

    PubMed  CAS  Google Scholar 

  • French PJ, Bijman J, Edixhoven M, Vaandrager AB, Scholte BJ, Lohmann SM, Nairn AC, de Jonge HR (1995) Isotype-specific activation of cystic fibrosis transmembrane conductance regulator-chloride channels by cGMP-dependent protein kinase II. J Biol Chem 270:26626–26631

    PubMed  CAS  Google Scholar 

  • Fritsch RM, Saur D, Kurjak M, Oesterle D, Schlossmann J, Geiselhoringer A, Hofmann F, Allescher HD (2004) InsP3R-associated cGMP kinase substrate (IRAG) is essential for nitric oxide-induced inhibition of calcium signaling in human colonic smooth muscle. J Biol Chem 279:12551–12559

    PubMed  CAS  Google Scholar 

  • Gambaryan S, Hauser W, Kobsar A, Glazova M, Walter U (2001) Distribution, cellular localization, and postnatal development of VASP and Mena expression in mouse tissues. Histochem Cell Biol 116:535–543

    PubMed  CAS  Google Scholar 

  • Gambaryan S, Butt E, Marcus K, Glazova M, Palmetshofer A, Guillon G, Smolenski A (2003) cGMP-dependent protein kinase type II regulates basal level of aldosterone production by zona glomerulosa cells without increasing expression of the steroidogenic acute regulatory protein gene. J Biol Chem 278:29640–8

    PubMed  CAS  Google Scholar 

  • Geiselhoringer A, Werner M, Sigl K, Smital P, Worner R, Acheo L, Stieber J, Weinmeister P, Feil R, Feil S, Wegener J, Hofmann F, Schlossmann J (2004) IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. EMBO J 23:4222–4231

    PubMed  Google Scholar 

  • Giordano D, Magaletti DM, Clark EA (2006) Nitric oxide and cGMP protein kinase (cGK) regulate dendritic-cell migration toward the lymph-node-directing chemokine CCL19. Blood 107:1537– 1545

    PubMed  CAS  Google Scholar 

  • Given AM, Ogut O, Brozovich FV (2007) MYPT1 mutants demonstrate the importance of aa 888–928 for the interaction with PKGIalpha. Am J Physiol Cell Physiol 292:C432–439

    PubMed  CAS  Google Scholar 

  • Golin-Bisello F, Bradbury N, Ameen N (2005) STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol 289:C708–716

    PubMed  CAS  Google Scholar 

  • Grillet N, Pattyn A, Contet C, Kieffer BL, Goridis C, Brunet JF (2005) Generation and characteri zation of Rgs4 mutant mice. Mol Cell Biol 25:4221–4228

    PubMed  CAS  Google Scholar 

  • Gudi T, Casteel DE, Vinson C, Boss GR, Pilz RB (2000) NO activation of fos promoter elements requires nuclear translocation of G-kinase I and CREB phosphorylation but is independent of MAP kinase activation. Oncogene 19:6324–6333

    PubMed  CAS  Google Scholar 

  • Gudi T, Lohmann SM, Pilz RB (1997) Regulation of gene expression by cyclic GMP-dependent protein kinase requires nuclear translocation of the kinase: identification of a nuclear localiza tion signal. Mol Cell Biol 17:5244–5254

    PubMed  CAS  Google Scholar 

  • Guilbault C, Saeed Z, Downey GP, Radzioch D (2007) Cystic fibrosis mouse models. Am J Respir Cell Mol Biol 36:1–7

    PubMed  CAS  Google Scholar 

  • Hardingham N, Fox K (2006) The role of nitric oxide and GluR1 in presynaptic and postsynaptic components of neocortical potentiation. J Neurosci 26:7395–7404

    PubMed  CAS  Google Scholar 

  • Haug LS, Jensen V, Hvalby O, Walaas SI, Ostvold AC (1999) Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic nucleotide-dependent kinases in vitro and in rat cerebellar slices in situ. J Biol Chem 274:7467–7473

    PubMed  CAS  Google Scholar 

  • Hauser W, Knobeloch KP, Eigenthaler M, Gambaryan S, Krenn V, Geiger J, Glazova M, Rohde E, Horak I, Walter U, Zimmer M (1999) Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice. Proc Natl Acad Sci U S A 96:8120–8125

    PubMed  CAS  Google Scholar 

  • Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee MH, Peng N, Oliveira-dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH, Wyss JM, Mecham RP, Blumer KJ (2003) Hyper tension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 111: 445–452

    PubMed  CAS  Google Scholar 

  • Hoenderop JG, Vaandrager AB, Dijkink L, Smolenski A, Gambaryan S, Lohmann SM, de Jonge HR, Willems PH, Bindels RJ (1999) Atrial natriuretic peptide-stimulated Ca2+ reabsorption in rabbit kidney requires membrane-targeted, cGMP-dependent protein kinase type II. Proc Natl Acad Sci U S A 96:6084–6089

    PubMed  CAS  Google Scholar 

  • Hoffmeister M, Riha P, Neumuller O, Danielewski O, Schultess J, Smolenski AP (2008) Cyclic nucleotide-dependent protein kinases inhibit binding of 14-3-3 to the GTPase-activating pro tein Rap1GAP2 in platelets. J Biol Chem 283:2297–2306

    PubMed  CAS  Google Scholar 

  • Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    PubMed  CAS  Google Scholar 

  • Hoit BD, Khoury SF, Kranias EG, Ball N, Walsh RA (1995) In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res 77:632–637

    PubMed  CAS  Google Scholar 

  • Huber A, Neuhuber WL, Klugbauer N, Ruth P, Allescher HD (2000) Cysteine-rich protein 2, a novel substrate for cGMP kinase I in enteric neurons and intestinal smooth muscle. J Biol Chem 275:5504–5511

    PubMed  CAS  Google Scholar 

  • Ishii T, Hasegawa T, Pai CI, Yvgi-Ohana N, Timberg R, Zhao L, Majdic G, Chung BC, Orly J, Parker KL (2002) The roles of circulating high-density lipoproteins and trophic hormones in the phenotype of knockout mice lacking the steroidogenic acute regulatory protein. Mol Endocrinol 16:2297–2309

    PubMed  CAS  Google Scholar 

  • Kabashima K, Murata T, Tanaka H, Matsuoka T, Sakata D, Yoshida N, Katagiri K, Kinashi T, Tanaka T, Miyasaka M, Nagai H, Ushikubi F, Narumiya S (2003) Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol 4: 694–701

    PubMed  CAS  Google Scholar 

  • Kawasaki Y, Kugimiya F, Chikuda H, Kamekura S, Ikeda T, Kawamura N, Saito T, Shinoda Y, Higashikawa A, Yano F, Ogasawara T, Ogata N, Hoshi K, Hofmann F, Woodgett JR, Nakamura K, Chung UI, Kawaguchi H (2008) Phosphorylation of GSK-3beta by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes. J Clin Invest 118:2506–2515

    PubMed  CAS  Google Scholar 

  • Kean L, Cazenave W, Costes L, Broderick KE, Graham S, Pollock VP, Davies SA, Veenstra JA, Dow JA (2002) Two nitridergic peptides are encoded by the gene capability in Drosophila melanogaster. Am J Physiol Regul Integr Comp Physiol 282:R1297–R1307

    PubMed  CAS  Google Scholar 

  • Keicher C, Gambaryan S, Schulze E, Marcus K, Meyer HE, Butt E (2004) Phosphorylation of mouse LASP-1 on threonine 156 by cAMP- and cGMP-dependent protein kinase. Biochem Biophys Res Commun 324:308–316

    PubMed  CAS  Google Scholar 

  • Khromov AS, Wang H, Choudhury N, McDuffie M, Herring BP, Nakamoto R, Owens GK, Somlyo AP, Somlyo AV (2006) Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation. Proc Natl Acad Sci U S A 103:2440–2445

    PubMed  CAS  Google Scholar 

  • Kitazawa T, Eto M, Woodsome TP, Khalequzzaman M (2003) Phosphorylation of the myosin phosphatase targeting subunit and CPI-17 during Ca2+ sensitization in rabbit smooth muscle. J Physiol 546:879–889

    PubMed  CAS  Google Scholar 

  • Kleppisch T, Pfeifer A, Klatt P, Ruth P, Montkowski A, Fassler R, Hofmann F (1999) Long-term potentiation in the hippocampal CA1 region of mice lacking cGMP-dependent kinases is nor mal and susceptible to inhibition of nitric oxide synthase. J Neurosci 19:48–55

    PubMed  CAS  Google Scholar 

  • Komalavilas P, Lincoln TM (1994) Phosphorylation of the inositol 1,4,5-trisphosphate receptor by cyclic GMP-dependent protein kinase. J Biol Chem 269:8701–8707

    PubMed  CAS  Google Scholar 

  • Komalavilas P, Lincoln TM (1996) Phosphorylation of the inositol 1,4,5-trisphosphate receptor. Cyclic GMP-dependent protein kinase mediates cAMP and cGMP dependent phosphorylation in the intact rat aorta. J Biol Chem 271:21933–21938

    PubMed  CAS  Google Scholar 

  • Kudlacek PE, Pluznick JL, Ma R, Padanilam B, Sansom SC (2003) Role of hbeta1 in activation of human mesangial BK channels by cGMP kinase. Am J Physiol Renal Physiol 285:F289–294

    PubMed  CAS  Google Scholar 

  • Lalli MJ, Shimizu S, Sutliff RL, Kranias EG, Paul RJ (1999) [Ca2+]i homeostasis and cyclic nu cleotide relaxation in aorta of phospholamban-deficient mice. Am J Physiol 277:H963–970

    PubMed  CAS  Google Scholar 

  • Lawrence DW, Pryzwansky KB (2001) The vasodilator-stimulated phosphoprotein is regulated by cyclic GMP-dependent protein kinase during neutrophil spreading. J Immunol 166:5550–5556

    PubMed  CAS  Google Scholar 

  • Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB (2004) Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42:37–49

    PubMed  CAS  Google Scholar 

  • Lee E, Hayes DB, Langsetmo K, Sundberg EJ, Tao TC (2007) Interactions between the leucine-zipper motif of cGMP-dependent protein kinase and the C-terminal region of the targeting subunit of myosin light chain phosphatase. J Mol Biol 373:1198–1212

    PubMed  CAS  Google Scholar 

  • Lin LH, Talman WT (2001) Colocalization of GluR1 and neuronal nitric oxide synthase in rat nucleus tractus solitarii neurons. Neuroscience 106:801–809

    PubMed  CAS  Google Scholar 

  • Lindsay SL, Ramsey S, Aitchison M, Renne T, Evans TJ (2007) Modulation of lamellipodial struc ture and dynamics by NO-dependent phosphorylation of VASP Ser239. J Cell Sci 120:3011– 3021

    PubMed  CAS  Google Scholar 

  • Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 75:401–409

    PubMed  CAS  Google Scholar 

  • MacPherson MR, Lohmann SM, Davies SA (2004) Analysis of Drosophila cGMP-dependent pro tein kinases and assessment of their in vivo roles by targeted expression in a renal transporting epithelium. J Biol Chem 279:40026–40034

    PubMed  CAS  Google Scholar 

  • Marcus K, Moebius J, Meyer HE (2003) Differential analysis of phosphorylated proteins in resting and thrombin-stimulated human platelets. Anal Bioanal Chem 376:973–993

    PubMed  CAS  Google Scholar 

  • Markert T, Vaandrager AB, Gambaryan S, Pohler D, Hausler C, Walter U, De Jonge HR, Jarchau T, Lohmann SM (1995) Endogenous expression of type II cGMP-dependent protein kinase mRNA and protein in rat intestine. Implications for cystic fibrosis transmembrane conductance regulator. J Clin Invest 96:822–830

    PubMed  CAS  Google Scholar 

  • Massberg S, Gruner S, Konrad I, Garcia Arguinzonis MI, Eigenthaler M, Hemler K, Kersting J, Schulz C, Muller I, Besta F, Nieswandt B, Heinzmann U, Walter U, Gawaz M (2004) En hanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice. Blood 103:136–142

    PubMed  CAS  Google Scholar 

  • Matsumoto M, Nagata E (1999) Type 1 inositol 1,4,5-trisphosphate receptor knock-out mice: their phenotypes and their meaning in neuroscience and clinical practice. J Mol Med 77:406–411

    PubMed  CAS  Google Scholar 

  • Matsumoto M, Nakagawa T, Inoue T, Nagata E, Tanaka K, Takano H, Minowa O, Kuno J, Sakakibara S, Yamada M, Yoneshma H, Miyawaki A, Fukuuchi Y, Furuichi T, Okano H, Mikoshiba K, Noda T (1996) Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-triphosphate receptor. Nature 379:168–71

    PubMed  CAS  Google Scholar 

  • Meinecke M, Geiger J, Butt E, Sandberg M, Jahnsen T, Chakraborty T, Walter U, Jarchau T, Lohmann SM (1994) Human cyclic GMP-dependent protein kinase I beta overexpression increases phosphorylation of an endogenous focal contact-associated vasodilator-stimulated phosphoprotein without altering the thrombin-evoked calcium response. Mol Pharmacol 46:283–290

    PubMed  CAS  Google Scholar 

  • Mery PF, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci U S A 88:1197–1201

    PubMed  CAS  Google Scholar 

  • Michael SK, Surks HK, Wang Y, Zhu Y, Blanton R, Jamnongjit M, Aronovitz M, Baur W, Ohtani K, Wilkerson MK, Bonev AD, Nelson MT, Karas RH, Mendelsohn ME (2008) High blood pressure arising from a defect in vascular function. Proc Natl Acad Sci U S A 105: 6702–6707

    PubMed  CAS  Google Scholar 

  • Miyazawa T, Ogawa Y, Chusho H, Yasoda A, Tamura N, Komatsu Y, Pfeifer A, Hofmann F, Nakao K (2002) Cyclic GMP-dependent protein kinase II plays a critical role in C-type na-triuretic peptide-mediated endochondral ossification. Endocrinology 143:3604–3610

    PubMed  CAS  Google Scholar 

  • Moisan E, Chiasson S, Girard D (2007) The intriguing normal acute inflammatory response in mice lacking vimentin. Clin Exp Immunol 150:158–168

    PubMed  CAS  Google Scholar 

  • Murthy KS, Zhou H (2003) Selective phosphorylation of the IP3R-I in vivo by cGMP-dependent protein kinase in smooth muscle. Am J Physiol Gastrointest Liver Physiol 284:G221–G230

    PubMed  CAS  Google Scholar 

  • Murthy KS, Zhou H, Grider JR, Makhlouf GM (2003) Inhibition of sustained smooth muscle con traction by PKA and PKG preferentially mediated by phosphorylation of RhoA. Am J Physiol Gastrointest Liver Physiol 284:G1006–G1016

    PubMed  CAS  Google Scholar 

  • Niessen P, Rensen S, van Deursen J, De Man J, De Laet A, Vanderwinden JM, Wedel T, Baker D, Doevendans P, Hofker M, Gijbels M, van Eys G (2005) Smoothelin-a is essential for functional intestinal smooth muscle contractility in mice. Gastroenterology 129:1592–1601

    PubMed  CAS  Google Scholar 

  • Nishi A, Watanabe Y, Higashi H, Tanaka M, Nairn AC, Greengard P (2005) Glutamate regulation of DARPP-32 phosphorylation in neostriatal neurons involves activation of multiple signaling cascades. Proc Natl Acad Sci U S A 102:1199–1204

    PubMed  CAS  Google Scholar 

  • Obst M, Tank J, Plehm R, Blumer KJ, Diedrich A, Jordan J, Luft FC, Gross V (2006) NO-dependent blood pressure regulation in RGS2-deficient mice. Am J Physiol Regul Integr Comp Physiol 290:R1012–R1019

    PubMed  CAS  Google Scholar 

  • Oelze M, Mollnau H, Hoffmann N, Warnholtz A, Bodenschatz M, Smolenski A, Walter U, Skatchkov M, Meinertz T, Munzel T (2000) Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothe lial dysfunction. Circ Res 87:999–1005

    PubMed  CAS  Google Scholar 

  • Okamoto R, Ito M, Suzuki N, Kongo M, Moriki N, Saito H, Tsumura H, Imanaka-Yoshida K, Kimura K, Mizoguchi A, Hartshorne DJ, Nakano T (2005) The targeted disruption of the MYPT1 gene results in embryonic lethality. Transgenic Res 14:337–340

    PubMed  CAS  Google Scholar 

  • Oliveira-Dos-Santos AJ, Matsumoto G, Snow BE, Bai D, Houston FP, Whishaw IQ, Mariathasan S, Sasaki T, Wakeham A, Ohashi PS, Roder JC, Barnes CA, Siderovski DP, Pen ninger JM (2000) Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc Natl Acad Sci U S A 97:12272–12277

    PubMed  CAS  Google Scholar 

  • Owen VJ, Burton PB, Mullen AJ, Birks EJ, Barton P, Yacoub MH (2001) Expression of RGS3, RGS4 and Gi alpha 2 in acutely failing donor hearts and end-stage heart failure. Eur Heart J 22:1015–1020

    PubMed  CAS  Google Scholar 

  • Payne MC, Zhang HY, Prosdocimo T, Joyce KM, Koga Y, Ikebe M, Fisher SA (2006) Myosin phosphatase isoform switching in vascular smooth muscle development. J Mol Cell Cardiol 40:274–282

    PubMed  CAS  Google Scholar 

  • Pfeifer A, Aszodi A, Seidler U, Ruth P, Hofmann F, Fassler R (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274:2082–2086

    PubMed  CAS  Google Scholar 

  • Pryzwansky KB, Wyatt TA, Lincoln TM (1995) Cyclic guanosine monophosphate-dependent protein kinase is targeted to intermediate filaments and phosphorylates vimentin in A23187-stimulated human neutrophils. Blood 85:222–230

    PubMed  CAS  Google Scholar 

  • Reid HM, Kinsella BT (2003) The alpha, but not the beta, isoform of the human thromboxane A2 receptor is a target for nitric oxide-mediated desensitization. Independent modulation of Tp alpha signaling by nitric oxide and prostacyclin. J Biol Chem 278:51190–51202

    PubMed  CAS  Google Scholar 

  • Rieg T, Vallon V, Sausbier M, Sausbier U, Kaissling B, Ruth P, Osswald H (2007) The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. Kidney Int 72:566–573

    PubMed  CAS  Google Scholar 

  • Roberts JD, Jr., Chiche JD, Kolpa EM, Bloch DB, Bloch KD (2007) cGMP-dependent protein ki-nase I interacts with TRIM39R, a novel Rpp21 domain-containing TRIM protein. Am J Physiol Lung Cell Mol Physiol 293:L903–912

    PubMed  CAS  Google Scholar 

  • Romero DG, Plonczynski MW, Gomez-Sanchez EP, Yanes LL, Gomez-Sanchez CE (2006) RGS2 is regulated by angiotensin II and functions as a negative feedback of aldosterone production in H295R human adrenocortical cells. Endocrinology 147:3889–3897

    PubMed  CAS  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA (2002) Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J Biol Chem 277:3310– 3317

    PubMed  CAS  Google Scholar 

  • Sansom SC, Stockand JD (1996) Physiological role of large, Ca2+-activated K+ channels in human glomerular mesangial cells. Clin Exp Pharmacol Physiol 23:76–82

    PubMed  CAS  Google Scholar 

  • Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit-Drews P, Feil R, Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, Korth M, Schubert R, Gollasch M, Ruth P (2005) Elevated blood pres sure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation 112:60–68

    PubMed  CAS  Google Scholar 

  • Sausbier M, Hu H, Arntz C, Feil S, Kamm S, Adelsberger H, Sausbier U, Sailer CA, Feil R, Hofmann F, Korth M, Shipston MJ, Knaus HG, Wolfer DP, Pedroarena CM, Storm JF, Ruth P (2004) Cerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency. Proc Natl Acad Sci U S A 101:9474–9478

    PubMed  CAS  Google Scholar 

  • Sausbier M, Schubert R, Voigt V, Hirneiss C, Pfeifer A, Korth M, Kleppisch T, Ruth P, Hofmann F (2000) Mechanisms of NO/cGMP-dependent vasorelaxation. Circ Res 87:825–830

    PubMed  CAS  Google Scholar 

  • Sausbier M, Zhou XB, Beier C, Sausbier U, Wolpers D, Maget S, Martin C, Dietrich A, Ressmeyer AR, Renz H, Schlossmann J, Hofmann F, Neuhuber W, Gudermann T, Uhlig S, Korth M, Ruth P (2007) Reduced rather than enhanced cholinergic airway constriction in mice with ablation of the large conductance Ca2+-activated K+ channel. FASEB J 21:812–822

    PubMed  CAS  Google Scholar 

  • Scherer-Oppliger T, Leimbacher W, Blau N, Thony B (1999) Serine 19 of human 6-pyruvoyltetrahydropterin synthase is phosphorylated by cGMP protein kinase II. J Biol Chem 274:31341–31348

    PubMed  CAS  Google Scholar 

  • Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404:197–201

    PubMed  CAS  Google Scholar 

  • Schmidtko A, Gao W, Sausbier M, Rauhmeier I, Sausbier U, Niederberger E, Scholich K, Huber A, Neuhuber W, Allescher HD, Hofmann F, Tegeder I, Ruth P, Geisslinger G (2008) Cysteine-rich protein 2, a novel downstream effector of cGMP/cGMP-dependent protein kinase I-mediated persistent inflammatory pain. J Neurosci 28:1320–1330

    PubMed  CAS  Google Scholar 

  • Schroder F, Klein G, Fiedler B, Bastein M, Schnasse N, Hillmer A, Ames S, Gambaryan S, Drexler H, Walter U, Lohmann SM, Wollert KC (2003) Single L-type Ca(2+) channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res 60:268–277

    PubMed  CAS  Google Scholar 

  • Schultess J, Danielewski O, Smolenski AP (2005) Rap1GAP2 is a new GTPase-activating protein of Rap1 expressed in human platelets. Blood 105:3185–3192

    PubMed  CAS  Google Scholar 

  • Semplicini A, Lenzini L, Sartori M, Papparella I, Calo LA, Pagnin E, Strapazzon G, Benna C, Costa R, Avogaro A, Ceolotto G, Pessina AC (2006) Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. J Hypertens 24:1115–1124

    PubMed  CAS  Google Scholar 

  • Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, Khatri L, Arancio O, Ziff EB (2007) A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron 56:670–688

    PubMed  CAS  Google Scholar 

  • Smolenski A, Bachmann C, Reinhard K, Honig-Liedl P, Jarchau T, Hoschuetzky H, Walter U (1998) Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phospho rylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 273:20029–20035

    PubMed  CAS  Google Scholar 

  • Stockand JD, Sansom SC (1996) Role of large Ca(2+)-activated K+ channels in regulation of mesangial contraction by nitroprusside and ANP. Am J Physiol 270:C1773–1779

    PubMed  CAS  Google Scholar 

  • Stockand JD, Sansom SC (1998) Glomerular mesangial cells: electrophysiology and regulation of contraction. Physiol Rev 78:723–744

    PubMed  CAS  Google Scholar 

  • Sugiura T, Nakanishi H, Roberts JD Jr. (2008) Proteolytic Processing of cGMP-Dependent Protein Kinase I Mediates Nuclear cGMP Signaling in Vascular Smooth Muscle Cells. Circ Res

    Google Scholar 

  • Sun X, Kaltenbronn KM, Steinberg TH, Blumer KJ (2005) RGS2 is a mediator of nitric oxide action on blood pressure and vasoconstrictor signaling. Mol Pharmacol 67:631–639

    PubMed  CAS  Google Scholar 

  • Surks HK, Mendelsohn ME (2003) Dimerization of cGMP-dependent protein kinase 1alpha and the myosin-binding subunit of myosin phosphatase: role of leucine zipper domains. Cell Signal 15:937–944

    PubMed  CAS  Google Scholar 

  • Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME (1999) Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science 286:1583–1587

    PubMed  CAS  Google Scholar 

  • Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512

    PubMed  CAS  Google Scholar 

  • Tank J, Obst M, Diedrich A, Brychta RJ, Blumer KJ, Heusser K, Jordan J, Luft FC, Gross V (2007) Sympathetic nerve traffic and circulating norepinephrine levels in RGS2-deficient mice. Auton Neurosci 136:52–57

    PubMed  CAS  Google Scholar 

  • Tegge W, Frank R, Hofmann F, Dostmann WR (1995) Determination of cyclic nucleotide-dependent protein kinase substrate specificity by the use of peptide libraries on cellulose paper. Biochemistry 34:10569–10577

    PubMed  CAS  Google Scholar 

  • Thomas DW, Mannon RB, Mannon PJ, Latour A, Oliver JA, Hoffman M, Smithies O, Koller BH, Coffman TM (1998) Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J Clin Invest 102:1994–2001

    PubMed  CAS  Google Scholar 

  • Tokudome T, Kishimoto I, Horio T, Arai Y, Schwenke DO, Hino J, Okano I, Kawano Y, Kohno M, Miyazato M, Nakao K, Kangawa K (2008) Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart. Circulation 117:2329–2339

    PubMed  CAS  Google Scholar 

  • Vaandrager AB, Smolenski A, Tilly BC, Houtsmuller AB, Ehlert EM, Bot AG, Edixhoven M, Boomaars WE, Lohmann SM, de Jonge HR (1998) Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proc Natl Acad Sci U S A 95:1466–1471

    PubMed  CAS  Google Scholar 

  • Vaandrager AB, Tilly BC, Smolenski A, Schneider-Rasp S, Bot AG, Edixhoven M, Scholte BJ, Jarchau T, Walter U, Lohmann SM, Poller WC, de Jonge HR (1997) cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl- channels co-expressed with cGMP-dependent protein kinase type II but not type Ibeta. J Biol Chem 272:4195–4200

    PubMed  CAS  Google Scholar 

  • Wagner C, Pfeifer A, Ruth P, Hofmann F, Kurtz A (1998) Role of cGMP-kinase II in the control of renin secretion and renin expression. J Clin Invest 102:1576–1582

    PubMed  CAS  Google Scholar 

  • Wagner LE, 2nd, Li WH, Yule DI (2003) Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the function ally important sites in the S2+ and S2− splice variants. J Biol Chem 278:45811–45817

    PubMed  CAS  Google Scholar 

  • Walker LA, MacDonald JA, Liu X, Nakamoto RK, Haystead TA, Somlyo AV, Somlyo AP (2001) Site-specific phosphorylation and point mutations of telokin modulate its Ca2+-desensitizing effect in smooth muscle. J Biol Chem 276:24519–24524

    PubMed  CAS  Google Scholar 

  • Wang HG, Lu FM, Jin I, Udo H, Kandel ER, de Vente J, Walter U, Lohmann SM, Hawkins RD, Antonova I (2005) Presynaptic and postsynaptic roles of NO, cGK, and RhoA in long-lasting potentiation and aggregation of synaptic proteins. Neuron 45:389–403

    PubMed  CAS  Google Scholar 

  • Wang X, Bruderer S, Rafi Z, Xue J, Milburn PJ, Kramer A, Robinson PJ (1999) Phosphoryla-tion of splicing factor SF1 on Ser20 by cGMP-dependent protein kinase regulates spliceosome assembly. EMBO J 18:4549–4559

    PubMed  CAS  Google Scholar 

  • Wang X, Pluznick JL, Settles DC, Sansom SC (2007) Association of VASP with TRPC4 in PKG-mediated inhibition of the store-operated calcium response in mesangial cells. Am J Physiol Renal Physiol 293:F1768–1776

    PubMed  CAS  Google Scholar 

  • Wang Y, El-Zaru MR, Surks HK, Mendelsohn ME (2004) Formin homology domain protein (FHOD1) is a cyclic GMP-dependent protein kinase I-binding protein and substrate in vascular smooth muscle cells. J Biol Chem 279:24420–24426

    PubMed  CAS  Google Scholar 

  • Weber S, Bernhard D, Lukowski R, Weinmeister P, Worner R, Wegener JW, Valtcheva N, Feil S, Schlossmann J, Hofmann F, Feil R (2007) Rescue of cGMP kinase I knockout mice by smooth muscle specific expression of either isozyme. Circ Res 101:1096–1103

    PubMed  CAS  Google Scholar 

  • Wei J, Gorman TE, Liu X, Ith B, Tseng A, Chen Z, Simon DI, Layne MD, Yet SF (2005) Increased neointima formation in cysteine-rich protein 2-deficient mice in response to vascular injury. Circ Res 97:1323–1331

    PubMed  CAS  Google Scholar 

  • Werner ME, Meredith AL, Aldrich RW, Nelson MT (2008) Hyper-contractility and impaired silde-nafil relaxations in the BKCa channel deletion model of erectile dysfunction. Am J Physiol Regul Integr Comp Physiol 295:R181–R188

    PubMed  CAS  Google Scholar 

  • Werner ME, Zvara P, Meredith AL, Aldrich RW, Nelson MT (2005) Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel. J Physiol 567:545– 556

    PubMed  CAS  Google Scholar 

  • Wiedholz LM, Owens WA, Horton RE, Feyder M, Karlsson RM, Hefner K, Sprengel R, Celikel T, Daws LC, Holmes A (2008) Mice lacking the AMPA GluR1 receptor exhibit striatal hyper-dopaminergia and ‘schizophrenia-related’ behaviors. Mol Psychiatry 13:631–640

    PubMed  CAS  Google Scholar 

  • Wiersma HI, Galuska SE, Tomley FM, Sibley LD, Liberator PA, Donald RG (2004) A role for coccidian cGMP-dependent protein kinase in motility and invasion. Int J Parasitol 34:369–380

    PubMed  CAS  Google Scholar 

  • Wikstrom K, Kavanagh DJ, Reid HM, Kinsella BT (2008) Differential regulation of RhoA-mediated signaling by the TPalpha and TPbeta isoforms of the human thromboxane A2 receptor: Independent modulation of TPalpha signaling by prostacyclin and nitric oxide. Cell Signal 20:1497–1512

    PubMed  CAS  Google Scholar 

  • Wooldridge AA, Fortner CN, Lontay B, Akimoto T, Neppl RL, Facemire C, Datto MB, Kwon A, McCook E, Li P, Wang S, Thresher RJ, Miller SE, Perriard JC, Gavin TP, Hickner RC, Coffman TM, Somlyo AV, Yan Z, Haystead TA (2008) Deletion of the Protein Kinase A/Protein Kinase G Target SMTNL1 Promotes an Exercise-adapted Phenotype in Vascular Smooth Muscle. J Biol Chem 283:11850–11859

    PubMed  CAS  Google Scholar 

  • Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TA (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem 279:34496–34504

    PubMed  CAS  Google Scholar 

  • Wyatt TA, Lincoln TM, Pryzwansky KB (1991) Vimentin is transiently co-localized with and phos phorylated by cyclic GMP-dependent protein kinase in formyl-peptide-stimulated neutrophils. J Biol Chem 266:21274–21280

    PubMed  CAS  Google Scholar 

  • Xue J, Milburn PJ, Hanna BT, Graham ME, Rostas JA, Robinson PJ (2004) Phosphorylation of septin 3 on Ser-91 by cGMP-dependent protein kinase-I in nerve terminals. Biochem J 381:753–760

    PubMed  CAS  Google Scholar 

  • Yang L, Liu G, Zakharov SI, Bellinger AM, Mongillo M, Marx SO (2007) Protein kinase G phos phorylates Cav1.2 alpha1c and beta2 subunits. Circ Res 101:465–474

    PubMed  CAS  Google Scholar 

  • Yaroslavskiy BB, Zhang Y, Kalla SE, Garcia Palacios V, Sharrow AC, Li Y, Zaidi M, Wu C, Blair HC (2005) NO-dependent osteoclast motility: reliance on cGMP-dependent protein kinase I and VASP. J Cell Sci 118:5479–5487

    PubMed  CAS  Google Scholar 

  • Yuasa K, Michibata H, Omori K, Yanaka N (1999) A novel interaction of cGMP-dependent protein kinase I with troponin T. J Biol Chem 274:37429–37434

    PubMed  CAS  Google Scholar 

  • Yuasa K, Omori K, Yanaka N (2000) Binding and phosphorylation of a novel male germ cell-specific cGMP-dependent protein kinase-anchoring protein by cGMP-dependent protein kinase Ialpha. J Biol Chem 275:4897–4905

    PubMed  CAS  Google Scholar 

  • Zahedi RP, Lewandrowski U, Wiesner J, Wortelkamp S, Moebius J, Schutz C, Walter U, Gam baryan S, Sickmann A (2008) Phosphoproteome of resting human platelets. J Proteome Res 7:526–534

    PubMed  CAS  Google Scholar 

  • Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, Kaiser KM, Koster HJ, Borchardt T, Worley P, Lubke J, Frotscher M, Kelly PH, Sommer B, Andersen P, Seeburg PH, Sakmann B (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284:1805–1811

    PubMed  CAS  Google Scholar 

  • Zhang T, Zhuang S, Casteel DE, Looney DJ, Boss GR, Pilz RB (2007a) A cysteine-rich LIM-only protein mediates regulation of smooth muscle-specific gene expression by cGMP-dependent protein kinase. J Biol Chem 282:33367–33380

    CAS  Google Scholar 

  • Zhang YW, Gesmonde J, Ramamoorthy S, Rudnick G (2007b) Serotonin transporter phosphory lation by cGMP-dependent protein kinase is altered by a mutation associated with obsessive compulsive disorder. J Neurosci 27:10878–10886

    CAS  Google Scholar 

  • Zhou H, Nakamura T, Matsumoto N, Hisatsune C, Mizutani A, Iesaki T, Daida H, Mikoshiba K (2008) Predominant role of type 1 IP3 receptor in aortic vascular muscle contraction. Biochem Biophys Res Commun 369:213–219

    PubMed  CAS  Google Scholar 

  • Zhou XB, Wang GX, Ruth P, Huneke B, Korth M (2000) BK(Ca) channel activation by membrane-associated cGMP kinase may contribute to uterine quiescence in pregnancy. Am J Physiol Cell Physiol 279:C1751–C1759

    PubMed  CAS  Google Scholar 

  • Zhuang S, Nguyen GT, Chen Y, Gudi T, Eigenthaler M, Jarchau T, Walter U, Boss GR, Pilz RB (2004) Vasodilator-stimulated phosphoprotein activation of serum-response element-dependent transcription occurs downstream of RhoA and is inhibited by cGMP-dependent protein kinase phosphorylation. J Biol Chem 279:10397–10407

    PubMed  CAS  Google Scholar 

  • Zuber AM, Singer D, Penninger JM, Rossier BC, Firsov D (2007) Increased renal responsiveness to vasopressin and enhanced V2 receptor signaling in RGS2−/− mice. J Am Soc Nephrol 18: 1672–1678

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Schlossmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Schlossmann, J., Desch, M. (2009). cGK Substrates. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_9

Download citation

Publish with us

Policies and ethics