Skip to main content

cGMP-Dependent Protein Kinase Modulators

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

The first cGMP-dependent protein kinase (PKG) modulators were described nearly 30 years ago and since then more than 200 compounds have been synthesized and tested, but only a small subset of these compounds has found widespread application. The aim of this review is to suggest a framework for evaluating and using PKG activators and inhibitors and to explore and interpret PKG signal transduction in cell culture-based model systems. Therefore, cross-reactivity of cGMP-analogs with other classes of cyclic nucleotide binding proteins, as well as the advantages and problems of newly designed PKG inhibitors, are discussed.

Additional information and a search option are available at www.cyclic-nucleotides.org.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams R, Tsien RY (1993) Controlling cell chemistry with caged compounds. Annu Rev Physiol 55:755–784

    Article  PubMed  CAS  Google Scholar 

  • Ashby CD, Walsh DA (1973) Characterization of the interaction of a protein inhibitor with adeno sine 3′, 5′-monophosphate-dependent protein kinases. II. Mechanism of action with the holoen-zyme. J Biol Chem 248:1255–1261

    PubMed  CAS  Google Scholar 

  • Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 3′, 5′-monophosphate and guanosine 3′, 5′-monophosphate from rat urine. Biochem Biophys Res Commun 22:330–334

    Article  Google Scholar 

  • Bain J, McLauchlan H, Elliott M, Cohen P (2003) The specificity of protein kinase inhibitors: an update. Biochem J 371:199–204

    Article  PubMed  CAS  Google Scholar 

  • Bartsch M, Zorn-Kruppa M, Kuhl N, Genieser HG, Schwede F, Jastorff B (2003) Bioactivatable, membrane-permeant analogs of cyclic nucleotides as biological tools for growth control of C6 glioma cells. Biol Chem 384:1321–1326

    Article  PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Boerth NJ, Dey NB, Cornwell TL, Lincoln TM (1997) Cyclic GMP-dependent protein kinase regulates vascular smooth muscle cell phenotype. J Vasc Res 34:245–259

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt M, Glazowa M, Gambaryan G, Volkommer T, Butt E, Bader B, Heermeier K, Lincoln TM, Walter U, Palmetshofer A (2000) KT5823 inhibits cGMP-dependent protein kinase activity in vitro but not in intact human platelets and rat mesangial cells. J Biol Chem 275:33536–33541

    Article  PubMed  CAS  Google Scholar 

  • Butt E, Nolte C, Schulz S, Beltman J, Beavo JA, Jastorff B, Walter U (1992) Analysis and func-tional role of cGMP-dependent protein kinase in intact human platelets using a specific activator 8-pCPT-cGMP. Biochem Pharmacol 43:2591–2600

    Article  PubMed  CAS  Google Scholar 

  • Butt E, Abel K, Krieger M, Palm D, Hoppe V, Hoppe J, Walter U (1994) cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269:14506–14517

    Google Scholar 

  • Butt E, Pöhler D, Genieser HG, Huggins JP, Bucher B (1995) Inhibition of cyclic GMP-dependent protein kinase-mediated effects by (Rp)-8-bromo-PET-cyclic GMPS. Brit J Parma-col 116:3110–3116

    CAS  Google Scholar 

  • Chang K, Elledge SJ, Hannon GJ (2006) Lessons from nature: microRNA-based shRNA libraries. Nat Methods 3:707–714

    Article  PubMed  CAS  Google Scholar 

  • Cho-Chung YS, Pepe S, Clair T, Budillon A, Nesterova M (1995) cAMP-dependent protein kinase: role in normal and malignant growth. Crit Rev Oncol Hematol 21:33–61

    Article  Google Scholar 

  • Christensen EN, Mendelsohn ME (2006) Cyclic GMP-dependent protein kinase Ialpha inhibits thrombin receptor-mediated calcium mobilization in vascular smooth muscle cells. J Biol Chem 281:8409–8416

    Article  PubMed  CAS  Google Scholar 

  • Corbin JD, Ogreid D, Miller JP, Suva RH, Jastorff B, Doskeland SO (1986) Studies of cGMP analog specificity and function of the two intrasubunit binding sites of cGMP-dependent protein kinase. J Biol Chem 261:1208–1214

    PubMed  CAS  Google Scholar 

  • Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401

    Article  PubMed  CAS  Google Scholar 

  • De Jonge HR (1981) Cyclic GMP-dependent protein kinase in intestinal brushborders. Adv Cyclic Nucleotide Res 14:315–333

    PubMed  Google Scholar 

  • Do T, Sun Q, Beuve A, Kuzhikandathil EV (2007) Extracellular cAMP inhibits D1 dopamine receptor expression in CAD catecholaminergic cells via A2a adenosine receptors. J Neurochem 101:619–631

    Article  PubMed  CAS  Google Scholar 

  • Dostmann WR (1995) (Rp)-cAMPS inhibits the cAMP-dependent protein kinase by blocking the cAMP-induced conformational transition. FEBS Lett 375:231–234

    Article  PubMed  CAS  Google Scholar 

  • Dostmann WRM, Taylor S, Nickl K, Brayden R, Tegge WJ (2000) Highly specific membrane permeant peptide blockers of cGMP-dependent protein kinase Iα inhibit NO-induced cerebral dilation. Proc Natl Acad Sci USA 97:14772–14777

    Article  PubMed  CAS  Google Scholar 

  • Draijer R, Vaandrager AB, Nolte C, de Jonge HR, Walter U, van Hinsbergh VW (1995) Expres sion of cGMP-dependent protein kinase I and phosphorylation of its substrate, vasodilator-stimulated phosphoprotein, in human endothelial cells of different origin. Circ Res 77:897–905

    PubMed  CAS  Google Scholar 

  • Eigenthaler M, Nolte C, Halbrügge M, Walter U (1992) Concentration and regulation of cyclic nucleotides, cyclic-nucleotide-dependent protein kinases and one of their major substrates in human platelets. Estimating the rate of cAMP-regulated and cGMP-regulated protein phospho rylation in intact cells. Eur J Biochem 15:471–481

    Article  Google Scholar 

  • Fujishige K, Kotera J, MichibataH, YuasaK, Takebayashi S, Okumura K, Omori K (1999) Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem 274:18438–18445

    Article  PubMed  CAS  Google Scholar 

  • Gill GN, Holdy KE, Walton GM, Kanstein CB (1976) Purification and characterization of 3′: 5′-cyclic GMP-dependent protein kinase. Proc Natl Acad Sci USA 73:3918–3922

    Article  PubMed  CAS  Google Scholar 

  • Hagen V, Dzeja C, Frings S, Bendig J, Krause E, Kaupp UB (1996) Caged compounds of hydrolysis-resistant analogues of cAMP and cGMP: synthesis and application to cyclic nucleotide-gated channels. Biochemistry 35:7762–7771

    Article  PubMed  CAS  Google Scholar 

  • Hagen V, Frings S, Bendig J, Lorenz D, Wiesner B, Kaupp UB (2003) 7-(Dialkylamino)coumarin-4-yl]methyl-Caged Compounds as Ultrafast and Effective Long-Wavelength Phototriggers of 8-Bromo-Substituted Cyclic Nucleotides. Chembiochem 4:434–442

    Article  PubMed  CAS  Google Scholar 

  • Hidaka H, Kobayashi R (1992) Pharmacology of protein kinase inhibitors. Annu Rev Pharmacol Toxicol 32:377–392

    Article  PubMed  CAS  Google Scholar 

  • Jarchau T, Häusler C, Markert T, Pöhler D, Vanderkerkhove J, de Jonge HR, Lohmann SM, Walter U (1984) Cloning, expression, and in situ localization of rat intestinal cGMP-dependent protein kinase II. Proc Natl Acad Sci USA 91:9426–9430

    Article  Google Scholar 

  • Kase H, Iwahashi K, Nakanishi S, Matsuda Y, Yamada K, Takahashi M, Murakata C, Sato A, Kaneko M (1987) K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide protein kinases. Biochem Biophys Res Commun 142:436–440

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto T, Gohda E, Fujiwara M, Yamamoto I (1998) SKW 6.4 cell differentiation induced by interleukin 6 is stimulated by butyrate. Immunopharmacology 40:119–130

    Article  PubMed  CAS  Google Scholar 

  • Krass JD, Jastorff B, Genieser HG (1997) Determination of Lipophilicity by Gradient Elution High-Performance Liquid Chromatography. Anal Chem 69:2575–2581

    Article  CAS  Google Scholar 

  • Krieg T, Philipp S, Cui L, Dostmann WR, Downey JM, Cohen MV (2005) Peptide blockers of PKG inhibit ROS generation by acetylcholine and bradykinin in cardiomyocytes but fail to block protection in the whole heart. Am J Physiol Heart Circ Physiol 288:H1976–H1981

    Article  PubMed  CAS  Google Scholar 

  • Kuo JF, Greengard P (1970) Cyclic nucleotide dependent protein kinases. J Biol Chem 245:2493–2498

    PubMed  CAS  Google Scholar 

  • Lenz G (2005) The RNA interference revolution. Braz J Med Biol Res 38:1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Lin CS, Lin G, Xin ZC, Lue TF (2006) Expression, distribution and regulation of phosphodi-esterase 5. Curr Pharm Des 12:3439–57

    Article  PubMed  CAS  Google Scholar 

  • Lohmann SM, Walter U (2005) Tracking functions of cGMP-dependent protein kinases (cGK). Front Biosci 10:1313–1328

    Article  PubMed  CAS  Google Scholar 

  • Ludwig J, Margalit T, Eismann E, Lancet D, Kaupp UB (1990) Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Lett 270:24–29

    Article  PubMed  CAS  Google Scholar 

  • Mo E, Amin H, Bianco IH, Garthwaite J (2004) Kinetic of a cellular Nitric ocide/cGMP/ phosphodiesterase-5 pathway. J Biol Chem 279:26149–26158

    Article  PubMed  CAS  Google Scholar 

  • Orstavik S, Natarajan V, Tasken K, Jahnsen T, Sandberg M (1997) Characterization of the human gene encoding the type I alpha and type I beta cGMP-dependent protein kinase (PRKG1). Genomics 42:311–318

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A, Ruth P, Dostmann W, Sausbier M, Klatt P, Hofmann F (1999) Structure and function of cGMP-dependent protein kinases. Rev Physiol Biochem Pharmacol 135:105–149

    Article  PubMed  CAS  Google Scholar 

  • Pöhler D, Butt E, Meiβner J, Müller S, Lohse M, Walter U, Lohmann SM, Jarchau T (1995) Expression, purification and characterization of the cDMP-dependent protein kinase Iβ and II using the baculovirus system. FEBS Lett 374:419–425

    Article  PubMed  Google Scholar 

  • Poppe H, Rybalkin SD, Rehmann H, Hinds TR, Tang XB, Christensen AE, Schwede F, Genieser HG, Bos JL, Doskeland SO, Beavo JA, Butt E (2008) Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods 5:277–278

    Article  PubMed  CAS  Google Scholar 

  • Ruth P, Pfeifer A, Kamm S, Klatt P, Dostmann WRG, Hofmann F (1997) Identification of the amino acid sequences responsible for the high affinity activation of cGMP Kinase Iα. J Biol Chem 272:10522–10528

    Article  PubMed  CAS  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA (2002) Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J Biol Chem 277:3310–3317

    Article  PubMed  CAS  Google Scholar 

  • Schwede F, Maronde E, Genieser HG, Jastorff B (2000a) Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 87:199–226

    Article  CAS  Google Scholar 

  • Schwede F, Brustugun OT, Zorn-Kruppa M, Doskeland SO, Jastorff B (2000b) Membrane-permeant, bioactivable analogues of cGMP as inducers of cell death in IPC-81 leukemia cells. Bioorg Med Chem Lett 10:571–573

    Article  CAS  Google Scholar 

  • Sekar KR, Hatchett RJ, Shabb JB, Wolfe L, Francis SH, Wells JN, Jastorff B, Butt E, Chakinala MM, Corbin JD. (1992) Relaxation of pig coronary arteries by new and potent cGMP analogs that selectively activate type 1 alpha, compared with type 1 beta, cGMP-dependent protein kinese. Mol Pharmacol 42:103–108

    Google Scholar 

  • Shimizu-Albergine M, Rybalkin SD, Rybalkina IG, Feil R, Wolfsgruber W, Hofmann F, Beavo JA (2003) Individual cerebellar Purkinje cells express different cGMP phosphodiesterases (PDEs): in vivo phosphorylation of cGMP-specific PDE (PDE5) as an indicator of cGMP-dependent protein kinase (PKG) activation. J Neurosci 23:6452–6459

    Google Scholar 

  • Smolenski A, Bachmann C, Reinhard K, Hönig-Liedl P, Jarchau T, Hoschuetzky H, Walter U (1998) Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody. J Biol Chem 273:20029–20035

    Article  PubMed  CAS  Google Scholar 

  • Strassmaier T, Karpen JW (2007) Novel N7- and N1-substituted cGMP derivatives are potent acti vators of cyclic nucleotide-gated channels. J Med Chem 50:4186–4194

    Article  PubMed  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonu cleotide formed by tissue particles. J Biol Chem 232:1077–1091

    PubMed  CAS  Google Scholar 

  • Takio K, Wade RD, Smith SB, Krebs EG, Walsh KA, Titani K (1984) Guanosine cyclic 3′, 5′-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry 23:4200–4206

    Article  PubMed  CAS  Google Scholar 

  • Tanaka JC, Eccleston JF, Furman RE (1989) Photoreceptor channel activation by nucleotide deriva tives. Biochemistry 28:2776–2784

    Article  PubMed  CAS  Google Scholar 

  • Taylor MS, Okwuchukwuasanya C, Nickl CK, Tegge W, Brayden JE, Dostmann WRG (2004) Inhibition of cGMP-dependent protein kinase by the cell-permeable peptide DT-2 reveals a novel mechanism of vasoregulation. Mol Pharmacol 65:1111–1119

    Article  PubMed  CAS  Google Scholar 

  • Vaandrager AB, Edixhoven M, Bot AGM, Kroos MA, Jarchau T, Lohmann SL, Genieser HG, de Jonge HR (1997) Endogenous type II cGMP-dependent protein kinase exists as a dimer in membranes and can Be functionally distinguished from the type I isoforms. J Biol Chem 272:11816–11823

    Article  PubMed  CAS  Google Scholar 

  • Van Haastert PJ, Dijkgraaf PA, Konijn TM, Abbad EG, Petridis G, Jastorff B (1983) Substrate specificity of cyclic nucleotide phosphodiesterase from beef heart and from Dictyostelium dis coideum. Eur J Biochem 131:659–666

    Article  PubMed  Google Scholar 

  • Wang X, Pluznick JL, Settles DC, Sansom SC (2007) Association of VASP with TRPC4 in PKG-mediated inhibition of the store-operated calcium response in mesangial cells. Am J Physiol Renal Physiol 293:F1768–F1776

    Article  PubMed  CAS  Google Scholar 

  • Wei JY, Cohen ED, Genieser HG, Barnstable CJ (1998) Substituted cGMP analogs can act as selective agonists of the rod photoreceptor cGMP-gated cation channel. J Mol Neurosci 10:53–64

    Article  PubMed  CAS  Google Scholar 

  • Wyatt TA, Pryzwansky KB, Lincoln TM (1991) KT5823 activates human neutrophils and fails to inhibit cGMP-dependent protein kinase phosphorylation of vimentin. Res Commun Chem Pathol Pharmacol 74:3–14

    PubMed  CAS  Google Scholar 

  • Zhao J, Trewhella J, Corbin J, Francis S, Mitchell R, Bushin R, Walsh D (1997) Progressive cyclic nucleotide-induced conformational changes in the cGMP-dependent protein kinase studied by small angle X-ray scattering in solution. J Biol Chem 272:31929–31936

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Dasgupta C, Negash S, Raj JU (2007) Modulation of pulmonary vascular smooth muscle cell phenotype in hypoxia: role of cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol 292:L1459–L1466

    Article  PubMed  CAS  Google Scholar 

  • Zhuo M, Hu Y, Schultz C, Kandel ER Hawkins RD (1994) Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368:635–639

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Butt, E. (2009). cGMP-Dependent Protein Kinase Modulators. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_17

Download citation

Publish with us

Policies and ethics