Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

The cyclic nucleotides (cN), cAMP and cGMP, are key second messengers that mediate the intracellular effects of many signals known as “first messengers”, including environmental signals such as photons for vision and chemicals for taste, as well as hormones, paracrine factors, neurotransmitters, or autocrine factors. Many “first messengers” affect the level of cAMP and/or cGMP thereby initiating increased or decreased signaling selectively through cAMP- or cGMP-signaling pathways. cAMP and cGMP are synthesized by adenylyl cyclases and guanylyl cyclases, respectively, and degraded by a large superfamily of cN phosphodiesterases (PDE). Following the discovery of cAMP (Rall and Sutherland 1958), the search for the role of cAMP in modulating a wide variety of biological processes quickly ensued. Cyclic GMP was discovered in 1963, but many years elapsed before cGMP signaling proved to be a powerful and selective physiological process in its own right. Sutherland and colleagues reasoned that for cNs to be biologically relevant, there must be a mechanism for their removal from the cellular milieu. In 1958 they reported that heart extracts contained PDE activity that dampened or terminated the action of cAMP, and this PDE activity was blocked by methylxanthines, i.e., caffeine and theophylline (Butcher and Sutherland 1962). This was the first report of PDE action and identification of PDE inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson K, Stief G (1997) Neurotransmission and the contraction and relaxation of penile erectile tissues. World J Urol 14:14–20

    Google Scholar 

  • Baillie G, MacKenzie SJ, Houslay MD (2001) Phorbol 12-myristate 13-acetate triggers the protein kinase A-mediated phosphorylation and activation of the PDE4D5 cAMP phosphodiesterase in human aortic smooth muscle cells through a route involving extracellular signal regulated kinase (ERK). Mol Pharmacol 60(5):1100–1111

    PubMed  CAS  Google Scholar 

  • Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, Houslay MD (2003) Beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci USA 100(3):940–945

    PubMed  CAS  Google Scholar 

  • Baratti CM, Boccia MM (1999) Effects of sildenafil on long-term retention of an inhibitory avoid ance response in mice. Behav Pharmacol 10(8):731–737

    Article  PubMed  CAS  Google Scholar 

  • Barber R, Baillie GS, Bergmann R, Shepherd MC, Sepper R, Houslay MD, Heeke GV (2004) Differential expression of PDE4 cAMP phosphodiesterase isoforms in inflammatory cells of smokers with COPD, smokers without COPD, and nonsmokers. Am J Physiol Lung Cell Mol Physiol 287(2):L332–L343

    PubMed  CAS  Google Scholar 

  • Barnes AP, Livera G, Huang P, Sun C, O'Neal WK, Conti M, Stutts MJ, Milgram SL (2005) Phosphodiesterase 4D Forms a cAMP Diffusion Barrier at the Apical Membrane of the Airway Epithelium. J Biol Chem 280(9):7997–8003

    PubMed  CAS  Google Scholar 

  • Beard MB, Huston E, Campbell L, Gall I, McPhee I, Yarwood S, Scotland G, Houslay MD (2002) In addition to the SH3 binding region, multiple regions within the N-terminal noncatalytic por tion of the cAMP-specific phosphodiesterase, PDE4A5, contribute to its intracellular targeting. Cell Signal 14(5):453–465

    PubMed  CAS  Google Scholar 

  • Beavo J, Houslay MD, Francis SH (2006) Cyclic nucleotide phosphodiesterase superfamily. In: Beavo J, Francis SH, Houslay MD (ed) Cyclic nucleotide phosphodiesterases in health and disease. CRC Press, Boca Raton, pp 3–17

    Google Scholar 

  • Beavo JA, Reifsnyder DH (1990) Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 11(4):150–155

    PubMed  CAS  Google Scholar 

  • Beltman J, Becker DE, Butt E, Jensen GS, Rybalkin SD, Jastorff B, Beavo JA (1995) Characteriza tion of cyclic nucleotide phosphodiesterases with cyclic GMP analogs: topology of the catalytic domains. Mol Pharmacol 47:330–339

    PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58(3):488–520

    PubMed  CAS  Google Scholar 

  • Bessay EP, Zoraghi R, Blount MA, Grimes KA, Beasley A, Francis SH, Corbin JD (2007) Phos phorylation of phosphodiesterase-5 is promoted by a conformational change induced by silde nafil, vardenafil, or tadalafil. Front Biosci 12:1899–1910

    PubMed  CAS  Google Scholar 

  • Bessay E, Blount M, Zoraghi R, Beasley A, Grimes K, Francis S, Corbin JD (2008) Phosphory lation increases affinity of the phosphodiesterase-5 catalytic site for tadalafil. J pharmacol Exp Ther 325:62–68

    PubMed  CAS  Google Scholar 

  • Bischoff E (2004) Potency, selectivity, and consequences of nonselectivity of PDE inhibition. Int J Impot Res 16(Suppl 1):S11–S14

    PubMed  CAS  Google Scholar 

  • Blokland A, Schreiber R, Prickaerts J (2006) Improving memory: a role for phosphodiesterases. Curr Pharm Des 12(20):2511–2523

    PubMed  CAS  Google Scholar 

  • Blount MA, Beasley A, Zoraghi R, Sekhar KR, Bessay EP, Francis SH, Corbin JD (2004) Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. Mol Pharmacol 66(1):144–152

    PubMed  CAS  Google Scholar 

  • Blount MA, Zoraghi R, Ke H, Bessay EP, Corbin JD, Francis SH (2006) A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization. Mol Pharmacol 70(5):1822–1831

    PubMed  CAS  Google Scholar 

  • Blount MA, Zoraghi R, Bessay EP, Beasley A, Francis SH, Corbin JD (2007) Conversion of phosphodiesterase-5 (PDE5) catalytic site to higher affinity by PDE5 inhibitors. J Pharmacol Exp Ther 323(2):730–737

    PubMed  CAS  Google Scholar 

  • Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A, Koenig G (2004) Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology 47(7):1081–1092.

    PubMed  CAS  Google Scholar 

  • Bolger GB (2006) Phosphodiesterase isoforms-an annotate list. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease). CRC Press, Boca Raton, pp 19–31

    Google Scholar 

  • Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, Osterloh IH, Gingell C (1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8(2):47-52

    PubMed  CAS  Google Scholar 

  • Borlaug BA, Melenovsky V, Marhin T, Fitzgerald P, Kass DA (2005) Sildenafil inhibits beta adrenergic-stimulated cardiac contractility in humans. Circulation 112(17):2642-2649.

    PubMed  CAS  Google Scholar 

  • Broughton BJ, Chaplen P, Knowles P, Lunt E, Pain DL, Wooldridge KR, Ford R, Marshall S, Walker JL, Maxwell DR (1974) New inhibitor of reagin-mediated anaphylaxis. Nature 251(5476):650–652

    PubMed  CAS  Google Scholar 

  • Burgers PM, Eckstein F, Hunneman DH, Baraniak J, Kinas RW, Lesiak K, Stec WJ (1979) Stere ochemistry of hydrolysis of adenosine 3′:5′-cyclic phosphorothioate by the cyclic phosphodi esterase from beef heart. J Biol Chem 254(20):9959–9961

    PubMed  CAS  Google Scholar 

  • Burnett A (2006) Erectile dysfunction. J Urol 175:25–31

    Google Scholar 

  • Burnett AL (2002) Nitric oxide regulation of penile erection: biology and therapeutic implications. J Androl 23(5):S20–S26

    PubMed  CAS  Google Scholar 

  • Burns F, Zhao AZ, Beavo JA (1996) Cyclic nucleotide phosphodiesterases: gene complexity, regu lation by phosphorylation, and physiological implications. [Review] [107 refs]. Adv Pharmacol (N Y) 36:29–48

    CAS  Google Scholar 

  • Bush PA, Aronson WJ, Buga GM, Rajfer J, Ignarro LJ (1992) Nitric oxide is a potent relaxant of human and rabbit corpus cavernosum. J Urol 147(6):1650–1655

    PubMed  CAS  Google Scholar 

  • Butcher RW, Sutherland EW (1962) Adenosine 3′,5′-phosphate in biological materials: I. Purifi cation and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′, 5′-phosphate in human urine. J Biol Chem 237:1244–1250

    PubMed  CAS  Google Scholar 

  • Butt E, Beltman J, Becker DE, Jensen GS, Rybalkin SD, Jastorff B, Beavo JA (1995) Characteriza tion of cyclic nucleotide phosphodiesterases with cyclic AMP analogs: topology of the catalytic sites and comparison with other cyclic AMP-binding proteins. Mol Pharmacol 47:340–347

    PubMed  CAS  Google Scholar 

  • Caglayan E, Huntgeburth M, Karasch T, Weihrauch J, Hunzelmann N, Krieg T, Erdmann E, Rosenkranz S (2006) Phosphodiesterase type 5 inhibition is a novel therapeutic option in Ray naud disease. Arch Intern Med 166(2):231–233

    PubMed  CAS  Google Scholar 

  • Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2005) A family of phospho diesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol 23(2):201–207

    PubMed  CAS  Google Scholar 

  • Carson CC, Lue TF (2005) Phosphodiesterase type 5 inhibitors for erectile dysfunction. BJU Int 96(3):257–280

    PubMed  CAS  Google Scholar 

  • Castro LR, Verde I, Cooper DM, Fischmeister R (2006) Cyclic guanosine monophosphate com partmentation in rat cardiac myocytes. Circulation 113(18):2221–2228

    PubMed  CAS  Google Scholar 

  • Charbonneau H, Beier N, Walsh KA, Beavo JA (1986) Identification of a conserved domain among cyclic nucleotide phosphodiesterases from diverse species. Proc Natl Acad Sci USA 83: 9308–9312

    PubMed  CAS  Google Scholar 

  • Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511

    PubMed  CAS  Google Scholar 

  • Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C (2003) Cyclic AMP-specific PDE4 phos phodiesterases as critical components of cyclic AMP signaling. J Biol Chem 278(8):5493–5496

    PubMed  CAS  Google Scholar 

  • Corbin JD, Francis SH (1999) Cyclic GMP phosphodiesterase-5: target of sildenafil. J Biol Chem 274(20):13729–13732

    PubMed  CAS  Google Scholar 

  • Corbin JD, Beebe SJ, Blackmore PF (1985) cAMP-dependent protein kinase activation lowers hepatocyte cAMP. J Biol Chem 260(15):8731–8735

    PubMed  CAS  Google Scholar 

  • Corbin JD, Turko IV, Beasley A, Francis SH (2000) Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding ac tivities. Eur J Biochem/FEBS 267(9):2760–2767

    CAS  Google Scholar 

  • Corbin J, Blount MA, Weeks JL, Beasley A, Kuhn KP, Ho SJ, Saidi LF, Hurley JH, J. K, Francis S (2003) [3H]sildenafil binding to Phosphodiesterase-5 Is Specific, Kinetically Heterogenous, and Stimulated by cGMP. Mol Pharmacol 63(6):1364–1372

    PubMed  CAS  Google Scholar 

  • Corbin JD, Beasley A, Blount MA, Francis SH (2004) Vardenafil: structural basis for higher po tency over sildenafil in inhibiting cGMP-specific phosphodiesterase-5 (PDE5). Neurochem Int 45(6):859–863

    PubMed  CAS  Google Scholar 

  • Corbin JD, Beasley A, Blount MA, Francis SH (2005) High lung PDE5: a strong basis for treat ing pulmonary hypertension with PDE5 inhibitors. Biochem Biophys Res Commun 334(3): 930–938

    PubMed  CAS  Google Scholar 

  • Corbin J, Francis S, Zoraghi R (2006) Tyrosine-612 in PDE5 contributes to higher affinity for vardenafil over sildenafil. Int J Impot Res 18(3):251–257

    PubMed  CAS  Google Scholar 

  • Coskran TM, Morton D, Menniti FS, Adamowicz WO, Kleiman RJ, Ryan AM, Strick CA, Schmidt CJ, Stephenson DT (2006) Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem 54(11):1205–1213

    PubMed  CAS  Google Scholar 

  • Cote RH (2006) Photoreceptor phosphodiesterase (PDE6): A G-protein-activated PDE regulating visual excitation in rod and cone photoreceptor cells. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC Press, Boca Raton, pp 165–193

    Google Scholar 

  • D'Sa C, Tolbert LM, Conti M, Duman RS (2002) Regulation of cAMP-specific phosphodiesterases type 4B and 4D (PDE4) splice variants by cAMP signaling in primary cortical neurons. J Neu rochem 81(4):745–757

    Google Scholar 

  • Dangrell S (2005) Comparison of clinical trials with sildenafil, vardenafil and tadalafil in erectile dysfunction. Exp Opin Pharmacother 6:75–84

    Google Scholar 

  • Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult car diac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280(13):12944–12955

    PubMed  CAS  Google Scholar 

  • Degerman E, Smith CJ, Tornqvist H, Vasta V, Belfrage P, Manganiello VC (1990) Evidence that insulin and isoprenaline activate the cGMP- inhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation. Proc Natl Acad Sci USA 87:533–537

    PubMed  CAS  Google Scholar 

  • Degerman E, Belfrage P Manganiello VC (1996) cGMP-inhibited phosphodiesterases (PDE3 gene family). Biochem Soc Trans 24:1010–1014

    PubMed  CAS  Google Scholar 

  • Degerman E, Belfrage P Manganiello VC (1997) Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). [Review] [61 refs]. J Biol Chem 272(11):6823–6826

    PubMed  CAS  Google Scholar 

  • Devan BD, Bowker JL, Duffy KB, Bharati IS, Jimenez M, Sierra-Mercado D, Jr., Nelson CM, Spangler EL, Ingram DK (2006) Phosphodiesterase inhibition by sildenafil citrate attenuates a maze learning impairment in rats induced by nitric oxide synthase inhibition. Psychopharma cology (Berl) 183(4):439–445

    CAS  Google Scholar 

  • Erguden J-K, Bauser M, Burkhardt N, Flubacher D, Friedl A, Hinz V, Jork R, Naab P, Niewohner U, Repp T-O, Schlemmer K-H, Stoltefuss J, Bruckner D, Hendrix M, Schauss D, Tersteegen A (2003) Preparation of imidazotriazines as phosphodiesterase 10A inhibitors for the treatment of neurodengenerative diseases., WO 03/00693 Bayer

    Google Scholar 

  • Erneux C, Couchie D, Dumont JE, Jastorff B (1984) Cyclic nucleotide derivatives as probes of phosphodiesterase catalytic and regulatory sites. Adv Cyclic Nucleotide Protein Phosphoryla tion Res 16:107–118

    CAS  Google Scholar 

  • Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I, Soderling S, Hetman J, Beavo JA, Phillips SC (2000) Molecular cloning and characterization of a distinct human phosphodi esterase gene family: PDE11A. Proc Natl Acad Sci USA 97(7):3702–3707

    PubMed  CAS  Google Scholar 

  • Ferrini MG, Vernet D, Magee TR, Shahed A, Qian A, Rajfer J, Gonzalez-Cadavid NF (2002) Antifibrotic role of inducible nitric oxide synthase. Nitric Oxide 6(3):283–294

    PubMed  CAS  Google Scholar 

  • Ferrini MG, Davila HH, Kovanecz I, Sanchez SP, Gonzalez-Cadavid NF, Rajfer J (2006) Vardenafil prevents fibrosis and loss of corporal smooth muscle that occurs after bilateral cavernosal nerve resection in the rat. Urology 68(2):429–435

    PubMed  Google Scholar 

  • Filippi S, Morelli A, Sandner P, Fibbi B, Mancina R, Marini M, Gacci M, Vignozzi L, Barbara Vannelli G, Carini M, Forti G, Maggi M (2006) Characterization and functional role of an androgen-dependent PDE-5 activity in bladder. Endocrinology 148:1019–1029.

    PubMed  Google Scholar 

  • Fink TL, Francis SH, Beasley A, Grimes KA, Corbin JD (1999) Expression of an active, monomeric catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). J Biol Chem 274(49):34613–34620

    PubMed  CAS  Google Scholar 

  • Fischmeister R, Castro L, Abi-Gerges A, Rochais F, Vandecasteele G (2005) Species- and tissue-dependent effects of NO and cyclic GMP on cardiac ion channels. Comp Biochem Physiol 142(2):136–143

    Google Scholar 

  • Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99(8):816–828

    PubMed  CAS  Google Scholar 

  • Fisher PW, Salloum F, Das A, Hyder H, Kukreja RC (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111(13):1601–1610

    PubMed  CAS  Google Scholar 

  • Foresta C, Lana A, Cabrelle A, Ferigo M, Caretta N, Garolla A, Palu G, Ferlin A (2005) PDE-5 inhibitor, Vardenafil, increases circulating progenitor cells in humans. Int J Impot Research 17(4):377–380.

    CAS  Google Scholar 

  • Francis SH, Corbin JD (2005) Phosphodiesterase-5 inhibition: the molecular biology of erectile function and dysfunction. Urol Clin North Am 32(4):419–429, vi.

    PubMed  Google Scholar 

  • Francis SH, Thomas MK, Corbin JD (1990) Cyclic GMP-binding cyclic GMP-specific phospho diesterase from lung. In: Beavo J, Houslay MD (eds) Cyclic nucleotide phosphodiesterases: structure, regulation, and drug action. Wiley, New York, pp 117–140

    Google Scholar 

  • Francis SH, Colbran JL, McAllister-Lucas LM, Corbin JD (1994) Zinc interactions and conserved motifs of the cGMP-binding cGMP- specific phosphodiesterase suggest that it is a zinc hydro lase. J Biol Chem 269:22477–22480

    PubMed  CAS  Google Scholar 

  • Francis SH, Chu DM, Thomas MK, Beasley A, Grimes K, Busch JL, Turko IV, Haik TL, Corbin JD (1998) Ligand-induced conformational changes in cyclic nucleotide phosphodiesterases and cyclic nucleotide-dependent protein kinases. Methods 14(1):81–92

    PubMed  CAS  Google Scholar 

  • Francis SH, Turko IV, Grimes KA, Corbin JD (2000) Histidine-607 and histidine-643 provide important interactions for metal support of catalysis in phosphodiesterase-5. Biochemistry 39:9591–9596

    PubMed  CAS  Google Scholar 

  • Francis SH, Turko IV, Corbin JD (2001) Cyclic nucleotide phosphodiesterases: relating structure and function. Prog Nucleic Acid Res Mol Biol 65:1–52

    PubMed  CAS  Google Scholar 

  • Francis SH, Zoraghi R, Kotera J, Ke H, Bessay EP, Blount MA, Corbin JD (2006) Phosphodiesterase-5: molecular characteristics relating to structure, function, and regulation. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC Press, Boca Raton, pp 131–164

    Google Scholar 

  • Freedman R, Girgis R, Mayes M (1999) Acute effect of nitric oxide on Raynaud's phenomenon in scleroderma. Lancet 354:739

    PubMed  CAS  Google Scholar 

  • Fries R, Shariat K, von Wilmowsky H, Bohm M (2005) Sildenafil in the treatment of Raynaud's phenomenon resistant to vasodilatory therapy. Circulation 112(19):2980–2985

    PubMed  CAS  Google Scholar 

  • Frossard N, Landry Y, Pauli G, Ruckstuhl M (1981a) Effects of cyclic AMP- and cyclic GMP-phosphodiesterase inhibitors on immunological release of histamine and on lung contraction. Br J Pharmacol 73(4):933–938

    CAS  Google Scholar 

  • Frossard N, Pauli G Landry Y (1981b) Inhibition of antigen-induced histamine release from rat mast cells by a cyclic GMP-phosphodiesterase inhibitor and sodium nitrite. Agents Actions 11(6–7):653–654

    CAS  Google Scholar 

  • Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, Grimminger F, Kurzyna M, Simonneau G (2005) Sildenafil citrate therapy for pul monary arterial hypertension. N Engl J Med 353(20):2148–2157

    PubMed  CAS  Google Scholar 

  • Ghofrani HA, Olschewski H, Seeger W, Grimminger F (2002) [Sildenafil for treatment of severe pulmonary hypertension and commencing right-heart failure]. Pneumologie 56(11):665–672

    PubMed  CAS  Google Scholar 

  • Ghofrani HA, Pepke-Zaba J, Barbera JA, Channick R, Keogh AM, Gomez-Sanchez MA, Kneussl M, Grimminger F (2004) Nitric oxide pathway and phosphodiesterase inhibitors in pulmonary arterial hypertension. J Am Coll Cardiol 43(12 Suppl S):68S–72S

    PubMed  CAS  Google Scholar 

  • Goldberg ND, Walseth TF, Stephenson JH, Krick TP, Graff G (1980) 18O-Labeling of guano sine monophosphate upon hydrolysis of cyclic guanosine 3′ : 5′-monophosphate by phospho diesterase. J Biol Chem 255:10344–10347

    PubMed  CAS  Google Scholar 

  • Gopal VK, Francis SH, Corbin JD (2001) Allosteric sites of phosphodiesterase-5 (PDE5). A po tential role in negative feedback regulation of cGMP signaling in corpus cavernosum. Eur J Biochem/FEBS 268(11):3304–3312

    CAS  Google Scholar 

  • Guazzi M, Samaja M (2007) The role of PDE5 inhibitors in cardiopulmonary disorders: from basic evidence to clinical development. Curr Med Chem 14:2181–2191

    PubMed  CAS  Google Scholar 

  • Guo J, Williams DJ, Puhl HL,III, Ikeda SR (2008) Inhibition of N-type calcium channels by ac tivation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons. J Pharmacol Exp Ther 324(1):342–351

    PubMed  CAS  Google Scholar 

  • Haning H, Niewohner U, Schenke T, Es-Sayed M, Schmidt G, Lampe T, Bischoff E (2002) Imidazo[5,1-f]triazin-4(3H)-ones, a new class of potent PDE 5 inhibitors. Bioorg Med Chem Lett 12(6):865–868

    PubMed  CAS  Google Scholar 

  • Haning H, Niewohner U, Bischoff E (2003) Phosphodiesterase type 5 (PDE5) inhibitors. Prog Med Chem 41:249–306

    PubMed  CAS  Google Scholar 

  • Hassan MA, Ketat AF (2005) Sildenafil citrate increases myocardial cGMP content in rat heart, decreases its hypertrophic response to isoproterenol and decreases myocardial leak of creatine kinase and troponin T. BMC Pharmacol 5(1):10

    Google Scholar 

  • Hendrix M, Kallus C (2004) Phosphodiesterase inhibitors: a chemgenomic view. In Chemoge nomics in Drug Discovery pp 243–288

    Google Scholar 

  • Hepp R, Tricoire L, Hu E, Gervasi N, Paupardin-Tritsch D, Lambolez B, Vincent P (2007) Phos phodiesterase type 2 and the homeostasis of cyclic GMP in living thalamic neurons. J Neu rochem 102(6):1875–1886

    CAS  Google Scholar 

  • Hirata K, Adji A, Vlachopoulos C, O'Rourke MF (2005) Effect of sildenafil on cardiac perfor mance in patients with heart failure. Am J Cardiol 96(10):1436–1440

    PubMed  CAS  Google Scholar 

  • Hoffmann R, Baillie GS, MacKenzie SJ, Yarwood SJ, Houslay MD (1999) The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. Embo J 18(4):893–903

    PubMed  CAS  Google Scholar 

  • Houslay MD, Adams DR (2003) PDE4 cAMP phosphodiesterases: modular enzymes that orches trate signalling cross-talk, desensitization and compartmentalization. Biochem J 370(Pt 1):1–18

    PubMed  CAS  Google Scholar 

  • Houslay MD, Milligan G (1997) Tailoring cAMP-signalling responses through isoform multiplic ity. [Review] [49 refs]. Trends Biochem Sci 22(6):217–224

    PubMed  CAS  Google Scholar 

  • Hryniewicz K, Dimayuga C, Hudaihed A, Androne AS, Zheng H, Jankowski K, Katz SD (2005) Inhibition of angiotensin-converting enzyme and phosphodiesterase type 5 improves endothe lial function in heart failure. Clin Sci (Lond) 108(4):331–338

    CAS  Google Scholar 

  • Huai Q, Liu Y, Francis SH, Corbin JD, Ke H (2004) Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J Biol chem 279(13):13095–13101

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Bush PA, Buga GM, Wood KS, Fukuto JM, Rajfer J (1990) Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun 170(2):843–850

    PubMed  CAS  Google Scholar 

  • Ishiwata N, Noguchi K, Kawanishi M, Asakura Y, Hori M, Mitani A, Ito Y, Takahashi K, Nishiyama H, Shudo N, Takahashi S, Takahashi K, Tsuruzoe N, Nakaike S (2007) NT-702 (parogrelil hydrochloride, NM-702), a novel and potent phosphodiesterase inhibitor, improves reduced walking distance and lowered hindlimb plantar surface temperature in a rat experimen tal intermittent claudication model. Life Sci 81(12):970–978

    PubMed  CAS  Google Scholar 

  • Jarvest RL, Lowe G, Baraniak J, Stec WJ (1982) A stereochemical investigation of the hy drolysis of cyclic AMP and the (Sp)-and (Rp)-diastereoisomers of adenosine cyclic 3′:5′-phosphorothioate by bovine heart and baker's-yeast cyclic AMP phosphodiesterases. Biochem J 203(2):461–470

    PubMed  CAS  Google Scholar 

  • Jin SL, Conti M (2002) Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci USA 99(11):7628–7633

    PubMed  CAS  Google Scholar 

  • Kapur V, Schwarz E (2007) The relationship between erectile dysfunction and cardiovascular dis ease Part I: pathophysiology and mechanisms. Rev Cardiovasc Med Fall 8:214–219

    Google Scholar 

  • Karpen JW, Rich TC (2001) The fourth dimension in cellular signaling. Science 293(5538): 2204–2205

    PubMed  CAS  Google Scholar 

  • Kass DA, Takimoto E, Nagayama T, Champion HC (2007) Phosphodiesterase regulation of nitric oxIDe signaling. Cardiovasc Res 75(2):303–314

    PubMed  CAS  Google Scholar 

  • Katz SD, BalIDemaj K, Homma S, Wu H, Wang J, Maybaum S (2000) Acute type 5 phosphodi esterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. J Am Coll Cardiol 36(3):845–851

    PubMed  CAS  Google Scholar 

  • Ke H, Wang H (2006) Structure, catalytic mechanism, and inhibitor selectivity of cyclic nucleotIDe phosphodiesterases. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotIDe phosphodi esterases in health and disease. CRC Press, Boca Raton, pp 607–625

    Google Scholar 

  • Kim Y, Yoo M, Lee M (2005) DA-8159-Udenafil. Drugs Future 30:678–682

    CAS  Google Scholar 

  • Kotera J, Omori K (2006) PDE9. In: Beavo JA, Francis SH, Houslay MD (eds) Cyclic nucleotIDe phosphodiesterases in health and disease. CRC, Boca Raton, pp 221–235

    Google Scholar 

  • Laliberte F, Han Y, Govindarajan A, Giroux A, Liu S, Bobechko B, Lario P, Bartlett A, Gorseth E, Gresser M, Huang Z (2000) Conformational difference between PDE4 apoenzyme and holoen-zyme. Biochemistry 39(21):6449–6458

    PubMed  CAS  Google Scholar 

  • Laliberte F, Liu S, Gorseth E, Bobechko B, Bartlett A, Lario P, Gresser MJ, Huang Z (2002) In vitro PKA phosphorylation-mediated human PDE4A4 activation. FEBS Lett 512(1–3):205–208

    PubMed  CAS  Google Scholar 

  • Lebel L, Menniti S, SchmIDt C (2003) US2003/32579, Pfizer

    Google Scholar 

  • Lim J, Pahlke G, Conti M (1999) Activation of the cAMP-specific phosphodiesterase PDE4D3 by phosphorylation. IDentification and function of an inhibitory domain. J Biol Chem 274(28):19677–19685

    CAS  Google Scholar 

  • Liu S, Laliberte F, Bobechko B, Bartlett A, Lario P, Gorseth E, Van Hamme J, Gresser MJ, Huang Z (2001) Dissecting the cofactor-dependent and independent bindings of PDE4 inhibitors. Bio chemistry 40(34):10179–10186

    CAS  Google Scholar 

  • Loughney K, Hill TR, Florio VA, Uher L, Rosman GJ, Wolda SL, Jones BA, Howard ML, McAllister-Lucas LM, Sonnenburg WK, Francis SH, Corbin JD, Beavo JA, Ferguson K (1998) Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′, 5′-cyclic nucleotIDe phosphodiesterase. Gene 216(1):139–147

    PubMed  CAS  Google Scholar 

  • Loughney K, Taylor J, Florio VA (2005) 3′, 5′-cyclic nucleotIDe phosphodiesterase 11A: localiza tion in human tissues. Int J Impot Res 17(4):320–325

    PubMed  CAS  Google Scholar 

  • Lue TF (2000) Erectile dysfunction. N Engl J Med 342(24):1802–1813

    PubMed  CAS  Google Scholar 

  • Lugnier C, Schoeffter P, Le Bec A, Strouthou E, Stoclet JC (1986) Selective inhibition of cyclic nucleotIDe phosphodiesterases of human, bovine and rat aorta. Biochem Pharmacol 35(10): 1743–1751

    PubMed  CAS  Google Scholar 

  • MacFarland RT, Zelus BD, Beavo JA (1991) High concentrations of a cGMP-stimulated phospho diesterase mediate ANP-induced decreases in cAMP and steroIDogenesis in adrenal glomeru losa cells. J Biol Chem 266(1):136–142

    PubMed  CAS  Google Scholar 

  • Martinez SE (2006) PDE2 Structure and functions. In: Beavo JA, Francis SH, Houslay MD (eds) Cyclic nucleotIDe phosphodiesterases in health and disease. CRC Press, Boca Raton, pp 55–77

    Google Scholar 

  • Martinez SE, Bruder S, Schultz A, Zheng N, Schultz JE, Beavo JA, Linder JU (2005) Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization. Proc Natl Acad Sci USA 102(8):3082–3087

    PubMed  CAS  Google Scholar 

  • Maurice DH (2003) Dynamic regulation of cAMP signaling by cGMP in the cardiovascular sys tem: roles of phosphodiesterase 2 and phosphodiesterase 3 enzymes. Proc West Pharmacol Soc 46:32–36

    PubMed  CAS  Google Scholar 

  • Maurice DH (2005) Cyclic nucleotIDe phosphodiesterase-mediated integration of cGMP and cAMP signaling in cells of the cardiovascular system. Front Biosci 10:1221–1228

    PubMed  CAS  Google Scholar 

  • Maurice DH, Crankshaw D, Haslam RJ (1991) Synergistic actions of nitrovasodilators and isopre naline on rat aortic smooth muscle. Eur J Pharmacol 192(2):235–242

    PubMed  CAS  Google Scholar 

  • McAllister-Lucas LM, Sonnenburg WK, Kadlecek A, Seger D, LeTrong H, Colbran JL, Thomas MK, Walsh KA, Francis SH, Corbin JD, Beavo JA (1993) The structure of a bovine lung cGMP-binding, cGMP-specific phosphodiesterase deduced from a cDNA clone. J Biol Chem 268:22863–22873

    Google Scholar 

  • McVary K, Monnig W, Jr JC, Young J, Tseng L, Ende Gvd (2007a) Sildenafil citrate improves erectile function and urinary symptoms in men with erectile dysfunction and lower urinary tract symptoms associated with benign prostatic hyperplasia: a randomized, double-blind trial. J Urol 177:1071–1077

    CAS  Google Scholar 

  • McVary KT, Roehrborn CG, Kaminetsky JC, Auerbach SM, Wachs B, Young JM, Esler A, SIDes GD, Denes BS (2007b) Tadalafil relieves lower urinary tract symptoms secondary to benign prostatic hyperplasia. J Urol 177(4):1401–1407

    CAS  Google Scholar 

  • Mehats C, Andersen C, Filopanti M, Jin SL, Conti M (2002) Cyclic nucleotIDe phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab 13(1):29–35

    PubMed  CAS  Google Scholar 

  • Menniti FS, Faraci WS, SchmIDt CJ (2006) Phosphodiesterases in the CNS: targets for drug devel opment. Nat Rev Drug Discov 5(8):660–670

    PubMed  CAS  Google Scholar 

  • Mullershausen F, Friebe A, Feil R, Thompson WJ, Hofmann F, Koesling D (2003) Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling. J Cell Biol 160(5):719–727

    PubMed  CAS  Google Scholar 

  • Nehra A, Barrett DM, Moreland RB (1999) Pharmacotherapeutic advances in the treatment of erectile dysfunction. Mayo Clin Proc 74(7):709–721

    PubMed  CAS  Google Scholar 

  • Niewoehner U, Ergueden J-K, Bauser M, Burkhardt N, Flubacher D, Friedl A, Gerlach I, Hinz V, Jork R, Naab P, Repp T-O, Schlemmer K-H, Stoltefuss J (2003) Novel use for PDE11A inhibitors, WO 03/00269 Bayer.

    Google Scholar 

  • Oelke M, Hedlund P, Albrecht K, Ellinghaus P, Stief CG, Jonas U, Andersson KE, Uckert S (2006) Expression of cAMP and cGMP-phosphodiesterase isoenzymes 3, 4, and 5 in the human cli toris: immunohistochemical and molecular biology study. Urology 67(5):1111–1116

    PubMed  Google Scholar 

  • Oki N, Takahashi SI, HIDaka H, Conti M (2000) Short term feedback regulation of cAMP in FRTL-5 thyroID cells. Role of PDE4D3 phosphodiesterase activation. J Biol Chem 275(15): 10831–10837

    PubMed  CAS  Google Scholar 

  • Omburo GA, Brickus T, Ghazaleh FA, Colman RW (1995) Divalent metal cation requirement and possible classification of cGMP-inhibited phosphodiesterase as a metallohydrolase. Arch Biochem Biophys 323(1):1–5

    PubMed  CAS  Google Scholar 

  • Padma-Nathan H, McMurray JG, Pullman WE, Whitaker JS, Saoud JB, Ferguson KM, Rosen RC (2001) On-demand IC351 (Cialis) enhances erectile function in patients with erectile dysfunc tion. Int J Impot Res 13(1):2–9

    Google Scholar 

  • Park K, Moreland RB, Goldstein I, Atala A, Traish A (1998) Sildenafil inhibits phosphodiesterase type 5 in human clitoral corpus cavernosum smooth muscle. Biochem Biophys Res Commun 249(3):612–617

    PubMed  CAS  Google Scholar 

  • Podzuweit T, Nennstiel P, Muller A (1995) Isozyme selective inhibition of cGMP-stimulated cyclic nucleotIDe phosphodiesterases by erythro-9-(2-hydroxy-3-nonyl) adenine. Cell signal 7(7):733–738

    PubMed  CAS  Google Scholar 

  • Pope J (2007) The diagnosis and treatment of Raynaud's phenomenon: a practical approach. Drugs 67:517–525

    PubMed  Google Scholar 

  • Prickaerts J, van Staveren WC, Sik A, Markerink-van Ittersum M, Niewohner U, van der Staay FJ, Blokland A, de Vente J (2002) Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience 113(2):351–361

    PubMed  CAS  Google Scholar 

  • Prickaerts J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J, Blokland A (2004) Phosphodiesterase type 5 inhibition improves early memory consolIDation of object information. Neurochem Int 45(6):915–928

    PubMed  CAS  Google Scholar 

  • Rajfer J, Aronson WJ, Bush PA, Dorey FJ, Ignarro LJ (1992) Nitric oxIDe as a mediator of relax ation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmis sion. N Engl J Med 326(2):90–94

    PubMed  CAS  Google Scholar 

  • Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotIDe by tissue particles. J Biol Chem 232:1065–1076

    PubMed  CAS  Google Scholar 

  • Ravipati G, McClung J, Aronow W, Peterson S, Frishman W (2007) Type 5 phosphodiesteras inhibitors in the treatment of erectile dysfunction and cardiovascular disease. Cardiol Rev 15: 76–86

    PubMed  Google Scholar 

  • Rodefer JS, Murphy ER, Baxter MG (2005) PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur J Neurosci 21(4):1070–1076

    PubMed  Google Scholar 

  • Rotella DP (2002) Phosphodiesterase 5 inhibitors: current status and potential applications. Nat Rev Drug Discov 1(9):674–682

    PubMed  CAS  Google Scholar 

  • Rotella DP (2003) Tadalafil Lilly ICOS. Curr Opin Invest Drugs 4(1):60–65

    CAS  Google Scholar 

  • Rybalkin SD, Bornfeldt KE, Sonnenburg WK, Rybalkina IG, Kwak KS, Hanson K, Krebs EG, Beavo JA (1997) Calmodulin-stimulated cyclic nucleotIDe phosphodiesterase (PDE1C) is in duced in human arterial smooth muscle cells of the synthetic, proliferative phenotype. J Clin Invest 100(10):2611–2621

    PubMed  CAS  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA (2002) Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J biol chem 277(5): 3310–3317

    PubMed  CAS  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA (2003) PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. Embo J 22(3):469–478

    PubMed  CAS  Google Scholar 

  • Sandner P, Hutter J, Tinel H, Ziegelbauer K, Bischoff E (2007) PDE5 inhibitors beyond erectile dysfunction. Int J Impot Res 19(6):533–543

    PubMed  CAS  Google Scholar 

  • Sandner P, Svenstrup N, Tinel H, Haning H, Bischoff E (2008) Phosphodiesterase 5 inhibitors and erectile dysfunction. Expert Opin Ther Pat 18(1):21–33

    CAS  Google Scholar 

  • Sastry BK, Narasimhan C, Reddy NK, Raju BS (2004) Clinical efficacy of sildenafil in primary pulmonary hypertension: a randomized, placebo-controlled, double-blind, crossover study. J Am Coll Cardiol 43(7):1149–1153

    PubMed  CAS  Google Scholar 

  • Scapin G, Patel SB, Chung C, Varnerin JP, Edmondson SD, Mastracchio A, Parmee ER, Singh SB, Becker JW, Van der Ploeg LH, Tota MR (2004) Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity. Biochemistry 43(20):6091–6100

    PubMed  CAS  Google Scholar 

  • Schermuly RT, Kreisselmeier KP, Ghofrani HA, Yilmaz H, Butrous G, Ermert L, Ermert M, Weissmann N, Rose F, Guenther A, Walmrath D, Seeger W, Grimminger F (2004) Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. Am J Respir Crit Care Med 169(1):39–45

    PubMed  Google Scholar 

  • Schultheiss D, Stief C (1999) Physiology and pathophysiology of erection: consequences for present medical therapy of rerectile dysfunction. Andrologia 31 (Suppl 1):59–64

    PubMed  Google Scholar 

  • Sebkhi A, Strange JW, Phillips SC, Wharton J, Wilkins MR (2003) Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension. Circulation 107(25):3230–3235

    PubMed  CAS  Google Scholar 

  • Seeger TF, Bartlett B, Coskran TM, Culp JS, James LC, Krull DL, Lanfear J, Ryan AM, SchmIDt CJ, Strick CA, Varghese AH, Williams RD, Wylie PG, Menniti FS (2003) Immuno-histochemical localization of PDE10A in the rat brain. Brain Res 985(2):113–126

    PubMed  CAS  Google Scholar 

  • Sekhar KR, Grondin P, Francis SH, Corbin JD (1996) Design and synthesis of xanthines and cyclic GMP analogues as potent inhibitors of PDE5. In: Schudt C, Dent G, Rabe KF (eds) Phospho diesterase inhibitors. Academic Press, New York, pp 135–146

    Google Scholar 

  • Senzaki H, Smith CJ, Juang GJ, Isoda T, Mayer SP, Ohler A, Paolocci N, Tomaselli GF, Hare JM, Kass DA (2001) Cardiac phosphodiesterase 5 (cGMP-specific) modulates beta-adrenergic sig naling in vivo and is down-regulated in heart failure. FASEB J 15(10):1718–1726

    PubMed  CAS  Google Scholar 

  • Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271(28):16526–16534

    PubMed  CAS  Google Scholar 

  • Seybold J, Thomas D, Witzenrath M, Boral S, Hocke AC, Burger A, Hatzelmann A, Tenor H, Schudt C, Krull M, Schutte H, Hippenstiel S, Suttorp N (2005) Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood 105(9):3569–3576

    PubMed  CAS  Google Scholar 

  • Shakur Y, Takeda K, Kenan Y, Yu ZX, Rena G, Brandt D, Houslay MD, Degerman E, Ferrans VJ, Manganiello VC (2000) Membrane localization of cyclic nucleotIDe phosphodiesterase 3 (PDE3). Two N-terminal domains are required for the efficient targeting to, and association of, PDE3 with endoplasmic reticulum. J Biol Chem 275(49):38749–38761

    PubMed  CAS  Google Scholar 

  • Shakur Y, Holst LS, Landstrom TR, Movsesian M, Degerman E, Manganiello V (2001) Regulation and function of the cyclic nucleotIDe phosphodiesterase (PDE3) gene family. Prog Nucleic AcID Res Mol Biol 66:241–277

    PubMed  CAS  Google Scholar 

  • Shepherd MC, Baillie GS, Stirling DI, Houslay MD (2004) Remodelling of the PDE4 cAMP phos phodiesterase isoform profile upon monocyte-macrophage differentiation of human U937 cells. Br J Pharmacol 142(2):339–351

    PubMed  CAS  Google Scholar 

  • Siuciak JA, Chapin DS, Harms JF, Lebel LA, McCarthy SA, Chambers L, Shrikhande A, Wong S, Menniti FS, SchmIDt CJ (2006) Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis. Neuropharmacology 51(2):386–396

    PubMed  CAS  Google Scholar 

  • Snyder PB, Esselstyn JM, Loughney K, Wolda SL, Florio VA (2005) The role of cyclic nucleotIDe phosphodiesterases in the regulation of adipocyte lipolysis. J LipID Res 46(3):494–503

    PubMed  CAS  Google Scholar 

  • Soderling SH, Beavo JA (2000) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 12(2):174–179

    PubMed  CAS  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA (1998) IDentification and characterization of a novel family of cyclic nucleotIDe phosphodiesterases. J Biol Chem 273(25):15553–15558

    PubMed  CAS  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA (1999) Isolation and characterization of a dual-substrate phos phodiesterase gene family: PDE10A. Proc Natl Acad Sci USA 96(12):7071–7076

    PubMed  CAS  Google Scholar 

  • Sonnenburg WK, Seger D, Kwak KS, Huang J, Charbonneau H, Beavo JA (1995) IDentifica tion of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotIDe phosphodiesterases. J Biol Chem 270(52):30989–31000

    PubMed  CAS  Google Scholar 

  • Stacey P, Rulten S, Dapling A, Phillips SC (1998) Molecular cloning and expression of human cGMP-binding cGMP-specific phosphodiesterase (PDE5). Biochem Biophys Res Commun 247(2):249–254

    PubMed  CAS  Google Scholar 

  • Stief CG, Porst H, Neuser D, Beneke M, Ulbrich E (2008) A Randomised, Placebo-Controlled Study to Assess the Efficacy of Twice-Daily Vardenafil in the Treatment of Lower Urinary Tract Symptoms Secondary to Benign Prostatic Hyperplasia. Eur Urol 53(6):1236–1244

    PubMed  CAS  Google Scholar 

  • Sung BJ, Hwang KY, Jeon YH, Lee JI, Heo YS, Kim JH, Moon J, Yoon JM, Hyun YL, Kim E, Eum SJ, Park SY, Lee JO, Lee TG, Ro S, Cho JM (2003) Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature 425(6953):98–102

    PubMed  CAS  Google Scholar 

  • Taher A, Meyer M, Stief CG, Jonas U, Forssmann WG (1997) Cyclic nucleotIDe phosphodiesterase in human cavernous smooth muscle. World J Urol 15(1):32–35

    PubMed  CAS  Google Scholar 

  • Takahashi T, Kanda T, Inoue M, Suzuki T, Kobayashi I, Kodama K, Nagai R (1996) A selective type V phosphodiesterase inhibitor, E4021, protects the development of right ventricular over load and medial thickening of pulmonary arteries in a rat model of pulmonary hypertension. Life Sci 59(23):PL371–PL377

    CAS  Google Scholar 

  • Takahashi SI, Nedachi T, Fukushima T, Umesaki K, Ito Y, Hakuno F, Van Wyk JJ, Conti M (2001) Long-term hormonal regulation of the cAMP-specific phosphodiesterases in cultured FRTL-5 thyroID cells. Biochim Biophys Acta 1540(1):68–81

    PubMed  CAS  Google Scholar 

  • Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M, Mergia E, Montrose DC, Isoda T, Aufiero K, Zaccolo M, Dostmann WR, Smith CJ, Kass DA (2005a) cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mecha nism. Circ Res 96(1):100–109

    CAS  Google Scholar 

  • Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005b) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11(2):214–222

    CAS  Google Scholar 

  • Takimoto E, Belardi D, Tocchetti CG, Vahebi S, Cormaci G, Ketner EA, Moens AL, Champion HC , Kass DA (2007) Compartmentalization of cardiac beta-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation 115(16):2159–2167

    PubMed  CAS  Google Scholar 

  • Taniguchi Y, Tonai-Kachi H, Shinjo K (2006) Zaprinast, a well-known cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Lett 580(21):5003–5008

    PubMed  CAS  Google Scholar 

  • Tejada ID (2004) Therapeutic strategies for optimizing PDE5 inhibitor therapy in patients with erectile dysfunction consIDered difficult or challenging to treat. Int J Impot Res 216:40–42

    Google Scholar 

  • Thomas MK, Francis SH, Corbin JD (1990) Substrate- and kinase-directed regulation of phospho rylation of a cGMP-binding phosphodiesterase by cGMP. J Biol Chem 265(25):14971–14978

    PubMed  CAS  Google Scholar 

  • Tinel H, Stelte-Ludwig B, Hutter J, Sandner P (2006) Pre-clinical evIDence for the use of phosphodiesterase-5 inhibitors for treating benign prostatic hyperplasia and lower urinary tract symptoms. BJU Int 98(6):1259–1263

    PubMed  CAS  Google Scholar 

  • Trigo-Rocha F, Aronson WJ, Hohenfellner M, Ignarro LJ, Rajfer J, Lue TF (1993) Nitric oxIDe and cGMP: mediators of pelvic nerve-stimulated erection in dogs. Am J Physiol 264(2 Pt 2): H419–H422

    Google Scholar 

  • Trigo-Rocha F, Hsu GL, Donatucci CF, Martinez-Pineiro L, Lue TF, Tanagho EA (1994) Intracel-lular mechanism of penile erection in monkeys. Neurourol Urodyn 13(1):71–80

    Google Scholar 

  • Turko IV, Francis SH, Corbin JD (1998) Potential roles of conserved amino acIDs in the cat alytic domain of the cGMP-binding cGMP-specific phosphodiesterase. J Biol Chem 273(11): 6460–6466

    PubMed  CAS  Google Scholar 

  • Turko IV, Ballard SA, Francis SH, Corbin JD (1999) Inhibition of cyclic GMP-binding cyclic GMP-specific phosphodiesterase (Type 5) by sildenafil and related compounds. Mol Pharmacol 56(1):124–130

    PubMed  CAS  Google Scholar 

  • Uckert S, Kuthe A, Jonas U, Stief CG (2001) Characterization and functional relevance of cyclic nucleotIDe phosphodiesterase isoenzymes of the human prostate. J Urol 166(6):2484–2490

    PubMed  CAS  Google Scholar 

  • Uckert S, Stief CG, Jonas U (2003) Current and future trends in the oral pharmacotherapy of male erectile dysfunction. Expert Opin Investig Drugs 12(9):1521–1533

    Article  PubMed  Google Scholar 

  • Uckert S, Ehlers V, Nuser V, Oelke M, Kauffels W, Scheller F, Jonas U (2005) In vitro functional responses of isolated human vaginal tissue to selective phosphodiesterase inhibitors. World J Urol 23(6):398–404

    PubMed  Google Scholar 

  • Uckert S, Oelke M, Stief CG, Andersson KE, Jonas U, Hedlund P (2006) Immunohistochemical distribution of cAMP- and cGMP-phosphodiesterase (PDE) isoenzymes in the human prostate. Eur Urol 49(4):740–745

    PubMed  Google Scholar 

  • Valente EG, Vernet D, Ferrini MG, Qian A, Rajfer J, Gonzalez-CadavID NF (2003) L-arginine and phosphodiesterase (PDE) inhibitors counteract fibrosis in the Peyronie's fibrotic plaque and related fibroblast cultures. Nitric OxIDe 9(4):229–244

    PubMed  CAS  Google Scholar 

  • Van Staveren WC, Steinbusch HW, Markerink-Van Ittersum M, Repaske DR, Goy MF, Kotera J, Omori K, Beavo JA, De Vente J (2003) mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol 467(4):566–580

    PubMed  Google Scholar 

  • Vandeput F, Wolda SL, Krall J, Hambleton R, Uher L, McCaw KN, Radwanski PB, Florio V, Movsesian MA (2007) Cyclic nucleotIDe phosphodiesterase PDE1C1 in human cardiac my ocytes. J Biol Chem 282(45):32749–32757

    PubMed  CAS  Google Scholar 

  • Vemulapalli S, Watkins RW, Chintala M, Davis H, Ahn HS, Fawzi A, Tulshian D, Chiu P, Chatterjee M, Lin CC, Sybertz EJ (1996) Antiplatelet and antiproliferative effects of SCH 51866, a novel type 1 and type 5 phosphodiesterase inhibitor. J Cardiovasc Pharmacol 28(6):862–869

    PubMed  CAS  Google Scholar 

  • Wada H, Manganiello VC, Osborne JC, Jr. (1987) Analysis of the kinetics of cyclic AMP hy drolysis by the cyclic GMP-stimulated cyclic nucleotIDe phosphodiesterase. J Biol Chem 262(29):13938–13945

    PubMed  CAS  Google Scholar 

  • Wang H, Liu Y, Huai Q, Cai J, Zoraghi R, Francis SH, Corbin JD, Robinson H, Xin Z, Lin G, Ke H (2006) Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. J Biol Chem 281(30):21469–21479

    PubMed  CAS  Google Scholar 

  • Wang H, Ye M, Robinson H, Francis SH, Ke H (2008) Conformational variations of both phosphodiesterase-5 and inhibitors provIDe the structural basis for the physiological effects of vardenafil and sildenafil. Mol Pharmacol 73(1):104–110

    PubMed  CAS  Google Scholar 

  • Wayman C, Phillips S, Lunny C, Webb T, Fawcett L, Baxendale R, Burgess G (2005) Phosphodi-esterase 11 (PDE11) regulation of spermatozoa physiology. Int J Impot Res 17(3):216–223

    PubMed  CAS  Google Scholar 

  • Weeks JL, Zoraghi R, Beasley A, Sekhar KR, Francis SH, Corbin JD (2005) High biochemi cal selectivity of tadalafil, sildenafil and vardenafil for human phosphodiesterase 5A1 (PDE5) over PDE11A4 suggests the absence of PDE11A4 cross-reaction in patients. Int J Impot Res 17(1):5–9

    PubMed  CAS  Google Scholar 

  • Weeks JL, II, Zoraghi R, Francis SH, Corbin JD (2007) N-Terminal domain of phosphodiesterase-11A4 (PDE11A4) decreases affinity of the catalytic site for substrates and tadalafil, and is involved in oligomerization. Biochemistry 46(36):10353–10364

    PubMed  CAS  Google Scholar 

  • Wu AY, Tang XB, Martinez SE, Ikeda K, Beavo JA (2004) Molecular determinants for cyclic nucleotIDe binding to the regulatory domains of phosphodiesterase 2A. J Biol Chem 279(36):37928–37938

    PubMed  CAS  Google Scholar 

  • Wunder F, Tersteegen A, Rebmann A, Erb C, Fahrig T, Hendrix M (2005) Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol Pharmacol 68(6):1775–1781

    PubMed  CAS  Google Scholar 

  • Xu RX, Hassell AM, Vanderwall D, Lambert MH, Holmes WD, Luther MA, Rocque WJ, Milburn MV, Zhao Y, Ke H, Nolte RT (2000) Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science 288(5472):1822–1825

    PubMed  CAS  Google Scholar 

  • Xu RX, Rocque WJ, Lambert MH, Vanderwall DE, Luther MA, Nolte RT (2004) Crystal struc tures of the catalytic domain of phosphodiesterase 4B complexed with AMP, 8-Br-AMP, and rolipram. J Mol Biol 337(2):355–365

    PubMed  CAS  Google Scholar 

  • Yan C, Zhao AZ, Bentley JK, Beavo JA (1996) The calmodulin-dependent phosphodiesterase gene PDE1C encodes several functionally different splice variants in a tissue- specific manner. J Biol Chem 271:25699–25706

    PubMed  CAS  Google Scholar 

  • Yuasa K, Kotera J, Fujishige K, Michibata H, Sasaki T, Omori K (2000) Isolation and characteri zation of two novel phosphodiesterase PDE11A variants showing unique structure and tissue-specific expression. J Biol Chem 275(40):31469–31479

    PubMed  CAS  Google Scholar 

  • Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, and Bollag G (2004) A glutamine switch mechanism for nucleotIDe selectivity by phosphodiesterases. Mol Cell 15(2):279–286

    PubMed  CAS  Google Scholar 

  • Zhang KYJ (2006) Crystal structure of phosphodiesterase families and the potential for rational drug design. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotIDe phosphodiesterase in health and disease. CRC Press, Boca Raton, pp 583–605

    Google Scholar 

  • Zhang L, Zhang RL, Wang Y, Zhang C, Zhang ZG, Meng H, Chopp M (2005a) Functional recovery in aged and young rats after embolic stroke: treatment with a phosphodiesterase type 5 inhibitor. Stroke 36(4):847–852

    Google Scholar 

  • Zhang X, Feng Q, Cote RH (2005b) Efficacy and selectivity of phosphodiesterase-targeted drugs in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors. Invest Oph thalmol Vis Sci 46(9):3060–3066

    Google Scholar 

  • Zhang RL, Zhang Z, Zhang L, Wang Y, Zhang C, Chopp M (2006) Delayed treatment with silde nafil enhances neurogenesis and improves functional recovery in aged rats after focal cerebral ischemia. J Neurosci Res 83(7):1213–1219

    PubMed  CAS  Google Scholar 

  • Zhao AZ, Yan C, Sonnenburg WK, Beavo JA (1997a) Recent advances in the study of Ca2+/CaM-activated phosphodiesterases: expression and physiological functions. Adv Second Messenger Phosphoprotein Res 31:237–251

    CAS  Google Scholar 

  • Zhao AZ, Zhao H, Teague J, Fujimoto W, Beavo JA (1997b) Attenuation of insulin secretion by insulin-like growth factor 1 is mediated through activation of phosphodiesterase 3B. Proc Natl Acad Sci USA 94(7):3223–3228

    CAS  Google Scholar 

  • Zhao AZ, Bornfeldt KE, Beavo JA (1998) Leptin inhibits insulin secretion by activation of phos phodiesterase 3B. J Clin Invest 102(5):869–873

    PubMed  CAS  Google Scholar 

  • Zhao AZ, Huan JN, Gupta S, Pal R, Sahu A (2002) A phosphatIDylinositol 3-kinase phosphodi esterase 3B-cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat Neurosci 5(8):727–728

    PubMed  CAS  Google Scholar 

  • Zoraghi R, Bessay EP, Corbin JD, Francis SH (2005) Structural and functional features in hu man PDE5A1 regulatory domain that provIDe for allosteric cGMP binding, dimerization, and regulation. J Biol Chem 280(12):12051–12063

    PubMed  CAS  Google Scholar 

  • Zoraghi R, Francis SH, Corbin JD (2007) Critical amino acIDs in phosphodiesterase-5 catalytic site that provIDe for high-affinity interaction with cGMP and inhibitors. Biochemistry 46: 13554–13563

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharron H. Francis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Francis, S.H., Corbin, J.D., Bischoff, E. (2009). Cyclic GMP-Hydrolyzing Phosphodiesterases. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_16

Download citation

Publish with us

Policies and ethics