Skip to main content

X-ray Telescopes and Elasticity Theory of Shells

  • Chapter
Astronomical Optics and Elasticity Theory

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1609 Accesses

Abstract

Catoptric systems for X-ray focusing cannot benefit from quasi-normal incidence mirrors, which have extremely low reflectance for this spectral range. They require ray deviation angles limited to a few degrees which avoid absorption by the reflective coating and hence are called grazing incidence systems. For high angular resolution, the mirror substrates are preferably in vitroceram or glass materials and the reflective coatings are either a single layer Ir, Au, or Pt, or alternate multilayers such as W+Si. Because of atmospheric absorption, X-ray telescopes must be space-based.

X-ray systems can be designed either as quasi-tubular mirrors extremely accurately aligned on a common axis, or as successive segmented sections of them, or as segments that are not arranged in a common symmetry plane.

In 1952, for the purpose of X-ray microscope objectives, Hans Wolter [29, 30] described three types of grazing incidence two-mirror systems known as Wolter two-mirror systems. All three types are stigmatic with a paraboloid primary mirror and a coaxial and confocal conicoid secondary. Type I is with a convergent primary and a convergent hyperboloid secondary. Type II is with a convergent primary and a divergent hyperboloid secondary. Type III is with a divergent primary and a convergent ellipsoid secondary (Fig. 10.1).

Compared to Types II and III, Wolter Type I is the only design where both mirrors provide a convergence. Given a maximum graze angle to minimize X-ray absorption, the Wolter Type I is the shortest of these long systems and therefore has been extensively utilized as a telescope in X-ray astronomy. We hereafter restrain to the description of this latter form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Aschenbach, X-ray telescopes (ROSAT), Rep. Prog. Phys., 48, 579–629 (1985)

    Article  ADS  Google Scholar 

  2. C.J. Burrows, R. Burg, R. Giacconi, Optimal grazing incidence optics and its application to wide-field imaging. Astrophys. J., 392, 760–765 (1992)

    Article  ADS  Google Scholar 

  3. R.C. Chase, Aplanatic grazing incidence X-ray microscopes: design and performances, Appl. Opt., 15, 3094–3098 (1976)

    Article  ADS  Google Scholar 

  4. R.C. Chase, L.P. VanSpeybroeck, Wolter-Schwarzschild telescopes for X-ray astronomy, Appl. Opt., 12, 1042–1044 (1973)

    Article  ADS  Google Scholar 

  5. H. Chrétien, Le télescope de Newton et le télescope aplanétique, Rev. d’Optique, 1, 51–64 (1922)

    Google Scholar 

  6. O. Citterio, M. Ghigo et al., Large-size glass segments for the production of the XEUS X-ray mirrors, SPIE Proc., 4815 (2003)

    Google Scholar 

  7. P. Concini, S. Campana, Optimization of grazing incidence mirrors and its application to surveying X-ray telescopes, Astron. Astrophys., 372, 1088–1094 (2001)

    Article  ADS  Google Scholar 

  8. J-J. Fermé, Improvement in bendable mirrors (Société Européenne de Systèmes Optiques – SESO), SPIE Proc., 3152, 103–109 (1997)

    Article  ADS  Google Scholar 

  9. J.H. Hair, J. Stewart et al., Constellation-x soft X-ray telescope segmented optic assembly and alignment implementation, SPIE Proc., 4851 (2002)

    Google Scholar 

  10. J.E. Harvey, A. Krywonos, P.L. Thompson, T.T. Saha, Grazing incidence hyperboloidhyperboloid designs for wide-field X-ray imaging applications, Appl. Opt., 40, 136–144 (2001)

    Article  ADS  Google Scholar 

  11. J.E. Harvey, M. Atanassova, A. Krywonos, Balancing detector effects with aberrations in the design of wide-field grazing incidence X-ray telescopes, Opt. Eng., 45(6) (2006)

    Google Scholar 

  12. D. Korsch, Aplanatic two-mirror telescope for near-normal to grazing incidence, Appl. Opt., 19, 499–503 (1980)

    Article  ADS  Google Scholar 

  13. D. Korsch, Reflective optics, Academic Press edt., Boston, Chap. 11 (1991)

    Google Scholar 

  14. G.R. Lemaitre, Active optics and X-ray telescope mirrors, SPIE Proc. on Space Telescope and Instrumentation II : Ultraviolet to Gamma Ray, 7011-37, session 5, p. 1–10 (2008)

    Google Scholar 

  15. A.E.H. Love, in Mathematical Theory of Elasticity, Dover Publications, New-York, 4th issue, Preface and 569 (1927)

    Google Scholar 

  16. D. Lynden-Bell, Exact optics: a unification of optical telescopes, Mont. Not. R. Astron. Soc., 334, 787–796 (2002)

    Article  ADS  Google Scholar 

  17. R.F. Malina, S. Bowyer, D. Finley, W. Cash, Wolter-Schwarzschild optics for the extreme uv, Opt. Eng., 19, 211–217 (1980)

    Article  ADS  Google Scholar 

  18. J.D. Mangus, J.H. Underwood, Optical design of glancing incidence X-ray telescopes, Appl. Opt., 8, 95–102 (1969)

    Article  ADS  Google Scholar 

  19. K. Nariai, Geometrical aberrations of a generalized Wolter Type I. 2. Analytical theory, Appl. Opt., 26, 4428–4432 (1987)

    Article  ADS  Google Scholar 

  20. R.J. Noll, P. Glenn, J.F. Osantowski, Optical surface analysis code (OSAC), in Scattering in Optical Materials II, S. Mussikant edt., SPIE Proc., 362, 78–82 (1983)

    Google Scholar 

  21. T.T. Saha, General surface equations for glancing incidence telescopes, Appl. Opt., 26, 658–663 (1987)

    Article  ADS  Google Scholar 

  22. T.T. Saha, W. Zhang, Equal-curvature grazing incidence X-ray telescopes, Appl. Opt., 42(22) 4599–4605 (2003)

    Article  ADS  Google Scholar 

  23. P.L. Thompson, J.E. Harvey, A system engineering analysis of aplanatic Wolter type I X-ray telescopes, Opt. Eng., 39, 1677–1691 (2000)

    Article  ADS  Google Scholar 

  24. S.P. Timoshenko, J.M. Gere, in Theory of Elastic Stability, McGraw-Hill Book Company, New-York, 2nd issue (1961)

    Google Scholar 

  25. S.P. Timoshenko, S. Woinowsky-Kieger, in Theory of Plates and Shells, McGraw-Hill Book Company, New-York, 2nd issue, Chap. 15, 466 (1959)

    Google Scholar 

  26. J.H. Underwood, P.C. Batson, H.R. Beguiristain, E.M. Gullikson, Elastic bending and watercooling strategies for producing high-quality synchrotron-radiation mirrors (Laurence Berkeley Nat. Lab.), SPIE Proc., 3152, 91–98 (1997)

    ADS  Google Scholar 

  27. L.P. VanSpeybroeck, R.C. Chase, Design parameters of paraboloid-hyperboloid telescopes for X-ray astronomy, Appl. Opt., 11, 440–445 (1972)

    Article  ADS  Google Scholar 

  28. W. Werner, Imaging properties of Wolter Type I telescopes, Appl. Opt., 16, 764–773 (1976)

    Article  ADS  Google Scholar 

  29. H. Wolter, Generalized Schwarzschild mirror systems with glancing incidence on image producing optics for X-rays, Ann. Phys. (Leipzig), 10, 286–295 (1952)

    Article  ADS  Google Scholar 

  30. H. Wolter, Mirror systems with glancing incidence on image producing optics for X-rays, Ann. Phys. (Leipzig), 10, 94–114 (1952)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lemaitre, G. (2009). X-ray Telescopes and Elasticity Theory of Shells. In: Astronomical Optics and Elasticity Theory. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68905-8_10

Download citation

Publish with us

Policies and ethics