Skip to main content

Spark Ignition and Combustion in Four-Stroke Gasoline Engines

  • Chapter
  • First Online:
Flow and Combustion in Reciprocating Engines

Part of the book series: Experimental Fluid Mechanics ((FLUID))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Heywood, “Internal Combustion Engine Fundamentals”, McGraw-Hill, New York (1988).

    Google Scholar 

  2. S.S. Penner, B.P. Mullins, “Explosions, Detonations, Flamability and Ignition”, Pergamon Press, London (1959).

    Google Scholar 

  3. B. Lewis, G. von Elbe, “Combustion, Flames and Explosions of Gases”, 2nd edn., Academic Press, New York (1961).

    Google Scholar 

  4. H. Müller, S. Rhode, G. Klink, “Gemischbildung, Verbrennung und Abgas im Ottomotor, Fachbibliographie mit Referaten bis 1965”, Universität Braunschweig, Braunschweigh (1972).

    Google Scholar 

  5. G. Konzelmann, “Über die Entflammung des Kraftstoff-Luftgemisches im Motor, Bosch Techn. Berichte 1, 6, 297–304 (1966).

    Google Scholar 

  6. R.R. Maly, “Spark Ignition, its Physics and Effect on the Internal Combustion Process”, in Fuel Economy: Road Vehicles Powered by Spark Ignition Engines, ed. by J.C. Hilliard, G.S. Springer, Plenum Press, New York 91–148 (1984).

    Google Scholar 

  7. J. Köhler, W. Lawrence, M. Schäfer, R. Schmidt, W. Stolz, “Spark Plasma Modeling”, Final Report “Engine and Fuel interactions in Real Engines”, ed. by R. Maly, Daimler-Benz AG, CEC-Daimler-Benz Project, CEC Contract JOU 2-CT 92-0081, Brussels (1995).

    Google Scholar 

  8. M. Schäfer, “Der Zündfunke, ein Beitrag zur Modellierung der motorischen Verbrennung”, PhD Thesis, University of Stuttgart (1997).

    Google Scholar 

  9. H. Albrecht, W.H. Bloss, W. Herden, R.R. Maly, B. Saggau, E. Wagner, “New Aspects of Spark Ignition”, SAE Paper 770853 (1977).

    Book  Google Scholar 

  10. R.R. Maly, M. Vogel, “Initiation and Propagation of Flame Fronts in Lean CH-Air Mixtures by the Three Modes of the Ignition Spark”, 17th Symposium (Int) on Combustion, The Combustion Institute, Pittsburgh, 821–831 (1978).

    Google Scholar 

  11. G.F.W. Ziegler, “Entflammung magerer Methan/Luft-Gemische durch kurzzeitige Bogen- und Glimmentladungen”, PhD Thesis, University of Stuttgart (1991).

    Google Scholar 

  12. R. Herweg, G.F.W. Ziegler, “Untersuchung der Flammenkernbildung im Ottomotor”, Abschlubericht Vorhaben 349 (AIF-Nr. 6359), FVV, Frankfurt (1988).

    Google Scholar 

  13. R. Herweg, “Die Entflammung brennbarer, turbulenter Gemische durch elektrische Zündanlagen - Bildung von Flammenkernen”, PhD Thesis, University of Stuttgart (1992).

    Google Scholar 

  14. R.R. Maly, H. Meinel, “Determination of Flow Velocity, Turbulence Intensity and Length and Time Scales from Gas Discharge Parameters”, 5th Int. Symposium on Plasma Chemistry, Edinburgh, 552–557, (1981).

    Google Scholar 

  15. R. Herweg, R.R. Maly, “A Fundamental Model for Flame Kernel Formation in S.I. Engines”, SAE Paper 922243 (1992).

    Book  Google Scholar 

  16. D. Bradley, F.K.K. Lung, “Spark Ignition and the Early Stages of Turbulent Flame Propagation”, Combust. Flame, 69, 71–93 (1987).

    Article  Google Scholar 

  17. Th. Mantel, “Three-Dimensional Numerical Simulations of Flame Kernel Formation Around a Spark Plug”, SAE Paper 920587 (1992).

    Book  Google Scholar 

  18. K.N.C. Bray, “Studies of the Turbulent Burning Velocity”, Report CUED/A-Thermo/Tr.32, Cambridge University, Eng, Dept., England (1990)

    Google Scholar 

  19. C.K. Law, D.L. Zhu, G. Yu, “Propagation and Extinction of Stretched Premixed Flames”, 21th Symposium (Int.) on Combustion, 1419–1426 (1986).

    Google Scholar 

  20. Ö.L. Gülder, “Correlations of Laminar Combustion for Alternative S.I. Engine Fuels”, SAE-Paper 841000 (1984).

    Google Scholar 

  21. R.R. Maly, “Die Zukunft der Funkenzündung”, MTZ, 59, Nr. 7–8, XXVIII–XXIII (1998), English version: “The Future of Spark Ignition”, MTZ Worldwide 7–8/98, Supplement, 37–41 (1998).

    Google Scholar 

  22. P. Hohner, “Ein adaptives Zündsystem mit integrierter Motorsensorik”, PhD Thesis, University of Stuttgart (1998).

    Google Scholar 

  23. Wilstermann, “Wechselspannungszündung mit integrierter Ionenstrommessung als Sensor für die Verbrebbungs- und Motorregelung”, PhD Thesis, University of Karlsruhe (1999), Fortschritts-Berichte VDI, Reihe 12, Nr. 389.

    Google Scholar 

  24. R.R. Maly, “State of the Art and Future Needs in S.I. Engine Combustion”, Invited Topical Review, 25th Symposium (Int) on Combustion, The Combustion Institute, Pittsburgh (1994).

    Google Scholar 

  25. H. Weller, S. Uslu, A.D. Gosman, R.R. Maly, R. Herweg, B. Heel, “Prediction of Combustion in Homogeneous-Charge Spark Ignition Engines”, Proc. COMODIA’94, JSME, Tokyo, 163–169 (1994).

    Google Scholar 

  26. B. Heel, R.R. Maly, H.G. Weller, A.D. Gosman, “Validation of S.I. Combustion Model Over Range of Speed, Load, Equivalence Ratio and Spark Timing”, Proc. COMODIA’98, JSME, Tokyo, 255–260 (1998).

    Google Scholar 

  27. R.R. Maly, G. Eberspach, W. Pfister, “Laser Diagnostics for Single Cycle Analysis of Crank Angle Resolved Length and Time Scales in Engine Combustion”, Proc. COMODIA’90, Kyoto, Japan, 399–404 (1990).

    Google Scholar 

  28. G.F.W. Ziegler, R. Herweg, P. Meinhardt, R.R. Maly, “Cycle-Resolved Flame Structure Analysis of Turbulent Premixed Engine Flames”, Proc. XXIII FISITA Congress, Paper 905001, Turin, Italy (1990).

    Google Scholar 

  29. E. Winklhofer, H. Phillip, G. Fraidl, H. Fuchs, “Fuel and Flame Imaging in SI Engines”, SAE Paper 930871 (1993).

    Book  Google Scholar 

  30. A.O. zur Loye, F.V. Bracco, “Two-Dimensional Visualization of Premixed-Charge Flame Structures in an I.C. Engine”, SAE Paper 870454 (1987).

    Book  Google Scholar 

  31. J. Mantzaras, F.G. Felton, F.V. Bracco, “3-D Visualization of Premixed Charge Engine Flames: Islands of Reactants and Products; Fractal Dimensions and Homogeneity”, SAE Paper 881633 (1988).

    Book  Google Scholar 

  32. F. Lawrenz, J. Köhler, F. Meier, W. Stolz, R. Wirth, W.H. Bloss, R.R. Maly, E. Wagner, M. Zahn, “Quantitative 2D LIF Measurements of Air/Fuel Ratios During the Intake Stroke in a Transparent S.I. Engine”, SAE Paper 922320 (1992).

    Book  Google Scholar 

  33. A. Orth, V. Sick, J. Wolfrum, R.R. Maly, M. Zahn, “Simultaneous 2D-Single Shot Imaging of OH Concentrations and Temperature Fields in a S.I. Engine Simulator”, 25th Symposium (Int) on Combustion, The Combustion Institute, Pittsburgh (1994).

    Google Scholar 

  34. R.R. Maly, K.N.C. Bray, T.C. Chew, “An Integral Time Scale of Evolution for Non-Stationary Turbulent Premixed Flames”, Combus. Sci. Technol., 66, 139–147 (1989).

    Article  Google Scholar 

  35. K.N.C Bray, T.C. Chew, R.R. Maly, “Quantitative Evaluation of Length and Time Scales of Turbulent Engine Combustion from 2D Laser Sheets”, Proc. 7th Symposium Turbine Shear Flow, Stanford University, (1989).

    Google Scholar 

  36. J. Wolfrum, Private communication (1994).

    Google Scholar 

  37. A. Bräumer, V. Sick, J. Wolfrum, V, Drewes, M. Zahn, R.R. Maly, “Quantitative Two-Dimensional Measurements of Nitric Oxide and Temperature Distributions in a Transparent Square Piston S.I. Engine”, SAE Paper 952462 (1995).

    Book  Google Scholar 

  38. V. Drewes, “Zweidimensionale Konzentrations- und Temperaturfeld-bestimmung in einem Forschungsmotor mit quadratischem Querschnitt”, PhD Thesis, University of Heidelberg (1995).

    Google Scholar 

  39. C. Schulz, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R.R. Maly, “Quantitative 2D Single Shot Imaging of NO Concentrations and Temperatures in a Transparent SI Engine”, 26th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 2597–2604 (1996).

    Google Scholar 

  40. H. Becker, P.B. Monkhouse, J. Wolfrum, R.S. Cant, K.N.C. Bray, R.R. Maly, W. Pfister, G. Stahl, R. Warnatz, “Investigation of Extinction in Unsteady Flames in Turbulent Combustion by 2D-LIF of OH Radicals and Flamelet Analysis”, 23rd Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh (1990).

    Google Scholar 

  41. G. Blessing, “Klopfuntersuchungen mit Hilfe der Formaldehyd-LIF”, in Report “Gas/Surface Interactions and Damaging Mechanisms in Knocking Combustion”, ed. by R. Maly, Daimler-Benz AG, CEC-Daimler-Benz Project, CEC Contract JOUE 0028-D-(MB), Brussels (1993).

    Google Scholar 

  42. G. König, “Auto-ignition and Knock Aerodynamics in Engine Combustion”, PhD Thesis, Mech. Dept., Leeds University (1993).

    Google Scholar 

  43. G. König, R.R. Maly, S. Schüffel, G. Blessing, “Effect of Engine Conditions on Knock”, in Final Report “Gas/Surface Interactions and Damaging Mechanisms in Knocking Combustion” , ed. by R. Maly, Daimler-Benz AG, CEC-Daimler-Benz Project, CEC Contract JOUE 0028-D-(MB), Brussels (1993).

    Google Scholar 

  44. H. Becker, A. Arnold, R. Suntz, P.B. Monkhouse, J. Wolfrum, R.R. Maly, W. Pfister, “Investigation of Flame Structure and Burning Behavior in an IC Engine by 2D-LIF of OH Radicals”, Appl. Phys. B, 50, 473–478 (1990).

    Article  Google Scholar 

  45. D.L. Reuss, “Two-Dimensional Particle Image Velocimetry with Electrooptical Image Shifting in an Internal Combustion Engine, Proc. SPIE, Vol. 2005, p. 413–424, Optical Diagnostics in Fluid and Thermal Flow, Soyoung S. Cha; James D. Trolinger; Eds., Bellingham WA 98227-0010 USA (1993).

    Google Scholar 

  46. E. Nino, B.F. Gajdeczko, P.G., Felton, “Two-Color Particle Image Velocimetry in an Engine with Combustion”, SAE Paper 930872 (1993).

    Book  Google Scholar 

  47. W. Stolz, J. Köhler, F. Lawrenz, F. Meier, W.H. Bloss, R.R. Maly, R. Herweg, M. Zahn, “Cycle Resolved Flow Field Measurements Using a PIV Movie Technique in a S.I. Engine”, SAE Paper 922354 (1992).

    Book  Google Scholar 

  48. D.H. Barnhart, R.J. Adrian, G.C. Papen, “Phase Conjugate Holographic System for High Resolution Particle Image Velocimetry”, Appl. Optics 33, 30, 7159–7170 (1994).

    Google Scholar 

  49. V. Drewes, H. Häcker, B. Heel, R. Herweg, R.R. Maly, M. Zahn, “NO and UHC in S.I. Engines”, in Final Report “Engine and Fuel interactions in Real Engines”, ed. by R. Maly, Daimler-Benz AG, CEC-Daimler-Benz Project, CEC Contract JOU 2-CT 92-0081, Brussels (1995).

    Google Scholar 

  50. J.C. Keck, “Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems”, Prog. Energy Combust. Sci., 16, 125–154 (1990).

    Article  Google Scholar 

  51. S. Hochgreb, L.F. Dryer, “A Comprehensive Study on CH2O Oxidation Kinetics”, Comb. Flame, 91, 257–284 (1992).

    Article  Google Scholar 

  52. J. Warnatz, “Resolution of Gas Phase and Surface Combustion Chemistry into Elementary Reactions”, 24th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 553–579 (1992).

    Google Scholar 

  53. C. Chevalier, W.J. Pitz, J. Warnatz, C.K. Westbrook, H. Melenk, “Hydrocarbon Ignition: Automatic Generation of Reaction Mechanisms and Application to Modeling of Engine Knock”, 24th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 93–101 (1992).

    Google Scholar 

  54. C.T. Bowman, R.K. Hanson, D.F. Davidson, W.C. (Jr.) Gardiner, V. Lissianski, G.P. Smith, D.M. Golden, M. Frenklach, M. Goldenberg, “Gri-Mech 22.11”, www.me.berkeley.edu/gri_mech (1997).

  55. F. Mauss, “Entwicklung eines kinetischen Modells der Rubildung mit schneller Polimerization”, PhD Thesis, RWTH Aachen (1997).

    Google Scholar 

  56. U. Maas, S.B. Pope, “Implementation of Simplified Chemical Kinetics Based on Intrinsic Low-Dimensional Manifolds”, 24th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, 24–103 (1992).

    Google Scholar 

  57. U. Maas, S.B. Pope, “Laminar Flame Calculations Using Simplified Chemical Kinetics Based on Intrinsic Low-Dimensional Manifolds”, 25th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh (1994).

    Google Scholar 

  58. N. Peters, B. Rogg, “Reduced Kinetic Mechanisms for Applications in Combustion Systems”, Springer Verlag, Berlin, Heidelberg (1993).

    Book  Google Scholar 

  59. C.K. Westbrook, “Combustion Chemistry Modeling in Engines”, Engineering Foundation Conference on Present and Future Engines for Automobiles, St. Barbara, August 25–30, 1991.

    Google Scholar 

  60. C.K. Law, “A Compilation of Experimental Data on Laminar Burning Velocities”, in Reduced Kinetic Mechanisms for Applications in Combustion Systems, ed. by N. Peters, B. Rogg, Springer Verlag, Berlin, Heidelberg, 15–26 (1993).

    Chapter  Google Scholar 

  61. P. Cambray, G. Joulin, “Length Scales of Wrinkling of Weakly-Forced, Unstable Premixed Flames”, Combust. Sci. Tech., 97, 405–428 (1994).

    Google Scholar 

  62. J.B. Heywood, “Combustion and its Modelling in Spark Ignition Engines”, Proc. COMODIA’94, JSME, Tokyo, 1–15 (1994).

    Google Scholar 

  63. D. Bradley, R.A. Hicks, M. Lawes, C.G.W. Sheppard, R. Wooley, “The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-octane-Air and Iso-octane-n-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb”, Comb. Flame, 115, 126–144 (1998).

    Article  Google Scholar 

  64. P. Clavin, F.A. Williams, “Theory of Premixed Flame Propagation in Large Scale Turbulence”, J. Fluid Mech., 90, 589 (1979).

    Google Scholar 

  65. R.J. Tabaczynski, C.R. Ferguson, K. Radhakrishnan, “A Turbulent Entrainment Model for Spark Ignition Engine Combustion”, SAE Paper 770647 (1977).

    Google Scholar 

  66. A.M. Klimov, “Premixed Turbulent Flames - Interplay of Hydrodynamics and Chemical Phenomena”, in Flames, Lasers and Reactive Systems, Prog. Astr. Aero. Vol. 88, Ed. American Institute of Aeronautics and Astronautics, Inc., New York, NY, USA (1983).

    Google Scholar 

  67. B. Pope, M.S. Anand, “Flamelet and Distributed Combustion in Premixed Flames”, 20th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh (1985).

    Google Scholar 

  68. P.O. Witze, J.K. Martin, C. Borgnakke, “Measurements and Predictions of the Pre-Combustion Fluid Motion and Combustion Rates in a Spark Ignition Engine”, SAE Paper 831697 (1983).

    Google Scholar 

  69. J.N. Mattavi, E.G. Groff, F.V. Matekunas, “Turbulence, Flame Motion and Combustion Chamber Geometry - Their Interactions in a Lean-Combustion Engine”, Proc. Conference on Fuel Economy and Emissions of Lean Burn Engines, IMechE, London, C100/79 (1979).

    Google Scholar 

  70. P.O. Witze, J.M.C. Mendes-Lopez, “Direct Measurements of the Turbulent Burning Velocity in a Homogeneous-Charge Engine”, SAE Paper 861531 (1986).

    Google Scholar 

  71. C.M. Ho, D.A. Santavicca, “Turbulence Effects on Early Flame Kernel Growth”, SAE Paper 872100 (1987).

    Google Scholar 

  72. R.R. Maly, “Applied Flow and Combustion Diagnostics for I.C. Engines”, Invited Paper, Proc. Computational Fluid Dynamics Conference ’94, Stuttgart, John Wiley & Sons (1994).

    Google Scholar 

  73. R.R. Maly, “State of the Art and Future Needs in S.I. Engine Combustion”, Invited Topical Review, 25th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh (1994).

    Google Scholar 

  74. T.W. Kuo, R.D. Reitz, “Computation of Premixed-Charge Combustion in Pancake and Pent-roof Engines”, SAE Paper 860670 (1986).

    Google Scholar 

  75. H. Weller, Uslu, A.D. Gosman, R.R. Maly, R. Herweg, and B. Heel, “Prediction of Combustion in Homogeneous-Charge Spark Ignition Engines”, Proc. COMODIA’94, JSME, Tokyo, 163–169 (1994).

    Google Scholar 

  76. H.G. Weller, “The Development of a New Flame Area Combustion Model Using Conditional Averaging”, Thermo-Fluids Section Report TF/9307, Dept. Mech. Eng., Imperial College London (1993).

    Google Scholar 

  77. K. Boulouchos, T. Steiner, P. Dimopoulos, “Investigation of Flame Speed Models for the Flame Growth Period during Premixed Engine Combustion”, SAE Paper 940476 (1994).

    Google Scholar 

  78. R. Borghi, B. Argueyrolles, S. Gauffie, P. Souhaite, “Application of a Presumed pdf Model of Turbulent Combustion to Reciprocating Engines”, 21th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh 1591–1599 (1996).

    Google Scholar 

  79. K.N.C. Bray, “Studies of the Turbulent Burning Velocity”, Proc. Royal Soc., London, A431 (1990).

    Google Scholar 

  80. P. Boudier, S. Henriot, T. Poinsot, T. Baritaud, “A Model for Turbulent Flame Ignition and Propagation in Spark Ignition Engines, 24th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh (1992).

    Google Scholar 

  81. H.G. Weller, C.J. Marooney, A.D. Gosman, “A New Spectral Method for Calculation of Time-Varying Area of a Laminar Flame in Homogeneous Turbulence”, 23rd Symposium (Int.) on Combustion, The Combustion Institute, Pittsburg (1990).

    Google Scholar 

  82. G.K. Fraidl, F. Quissek, E. Winklhofer, “Improvement of LEV/ULEV Potential of Fuel Efficient High Performance Engines”, SAE Paper 920416 (1992).

    Google Scholar 

  83. G. Almkvist, S. Eriksson, “An Analysis of Air to Fuel Ratio Response in a Multi Point Fuel Injected Engine Under Transient Conditions”, SAE Paper 932753 (1993).

    Google Scholar 

  84. J.M. Duclos, C. Griard, A. Torres, T. Baritaud, “Numerical Modeling of a Stratified Combustion Chamber”, in Final Report “Gasoline Engine with Reduced Raw Emissions”, ed. by R. Maly, Daimler-Benz AG, CEC-Daimler-Benz Project, CEC Contract TAUT-CT 92-0003, Brussels (1997).

    Google Scholar 

  85. J.M. Duclos, G. Bruneau, T. Baritaud, “3D Modeling of Combustion and Pollutants in a 4-valve S.I. Engine; Effect of Fuel and Residuals Distribution and Spark Location”, SAE Paper 961959 (1996).

    Google Scholar 

  86. C. Meneveau, T. Poinsot, “Stretching and Quenching of Flamelets in Premixed Turbulent Combustion”, Comb. Flame, 86, 311–332 (1991).

    Article  Google Scholar 

  87. T. Poinsot, D. Veynante, S. Candel, “Quenching Process and Premixed Turbulent Combustion Diagrams”, J. Fluid Mech., 228, 561–606 (1991).

    Google Scholar 

  88. T. Poinsot, D.C. Haworth, G. Bruneau, “Direct Simulation and Modeling of Flame-Wall Interaction for Premixed Turbulent Combustion”, Comb. Flame, 95, 118–132 (1993).

    Article  Google Scholar 

  89. W.K. Cheng, D. Hamrin, J.B. Heywood, S. Hochgreb, K. Min, M. Norris, “An Overview of Hydrocarbons Emissions Mechanisms in Spark-Ignition Engines”, SAE Paper 932708 (1993).

    Google Scholar 

  90. P.G. Brown, W.A. Woods, “Measurements of Unburned Hydrocarbons in a Spark Ignition Combustion Engine during the Warm-Up Period”, SAE Paper 922233 (1992).

    Google Scholar 

  91. S. Kubo, M. Yamamoto, Y. Kizaki, S. Yamazaki, T. Tanaka, K. Nakanishi, “Speciated Hydrocarbon Emissions of SI Engine During Cold Start and Warm-Up”, SAE Paper 932706 (1993).

    Google Scholar 

  92. R.G. Nitschke, “Reactivity of SI Engine Exhaust under Steady-State and Simulated Cold-Start Operating Conditions”, SAE Paper 932704 (1993).

    Google Scholar 

  93. R.M. Frank, J.B. Heywood, “The Effect of Piston Temperature on Hydrocarbon Emissions from a Spark-Ignited Direct-Injection Engine”, SAE Paper 910558 (1991).

    Google Scholar 

  94. P.R. Meernik, A.C. Alkidas, “Impact of Exhaust Valve Leakage on Engine-Out Hydrocarbons”, SAE Paper 932752 (1993).

    Google Scholar 

  95. V. Drewes, H. Häcker, B. Heel, R.R. Maly, M. Zahn, “NO and UHC in S.I. Engines”, in Report 3/95 “Engine and Fuel Interactions in Real Engines”, ed. by R. Maly, Daimler-Benz AG, CEC-Daimler-Benz Project, CEC Contract TAUT-CT 92-0003, Brussels (1995).

    Google Scholar 

  96. T. Tamura, S. Hochgreb, “Chemical Kinetic Modeling of the Oxidation of Unburned Hydrocarbons”, SAE Paper 922235 (1992).

    Google Scholar 

  97. F.H. Trinker, J. Cheng, G.C. Davis, “A Feedgas HC Emission Model for SI Engines Including Partial Burn Effects”, SAE Paper 932705 (1993).

    Google Scholar 

  98. C. Huynh, T, Baritaud, “Modeling Absorption / Desorption in Oil Films”, in Final Report “Engine and Fuel Interactions in Real Engines”, ed. by R. Maly, Daimler-Benz AG, CEC-Daimler-Benz Project, CEC Contract TAUT-CT 92-0003, Brussels (1995).

    Google Scholar 

  99. W.R. Leppard, J.D. Benson, J.C. Knepper, V.R. Burns, W.J. Koehl, R.A. Gorse, L.A. Rapp, A.M. Hochhauser, R.M. Reuter, “How Heavy Hydrocarbons in the Fuel Affect Exhaust Emissions: Correlation of Fuel, Engine-Out, and Tailpipe Speciation - The Auto/Oil Air Quality Improvement Research Program”, SAE Paper 932724 (1993).

    Google Scholar 

  100. C. Chevalier, P. Louessard, U.C. Müller, J. Warnatz, “A Detailed Low-Temperature Reaction Mechanism of n-Heptane Auto-Ignition”, COMODIA’94, JSME, Tokyo, 93–97 (1990).

    Google Scholar 

  101. W.J. Pitz, C.K. Westbrook, W.R. Leppard, “The Autoignition Chemistry of Paraffinic Fuels and Pro-Knock and Anti-Knock Additives: A Detailed Chemical Kinetic Study”, SAE Paper 912314 (1991).

    Google Scholar 

  102. W.R. Leppard, “The Autoignition Chemistries of Primary Reference Fuels, Olefins/Paraffin Binary Mixtures, and Non-Linear Octane Blending”, SAE Paper 922325 (1992).

    Google Scholar 

  103. G. König, C.G.W. Sheppard, “End Gas Autoignition and Knock in SI Engines”, SAE Paper 902135 (1990).

    Google Scholar 

  104. R.R. Maly, R. Klein, N. Peters, G. König, “Theoretical and Experimental Investigation of Knock Induced Surface Destruction”, SAE Paper 900025 (1990).

    Google Scholar 

  105. G. König, R.R. Maly, D. Bradley, A.K.C. Lau, C.G.W. Sheppard, “Role of Exothermic Centres on Knock Initiation and Knock Damage”, SAE Paper 902136 (1990).

    Google Scholar 

  106. A.K. Oppenheim, “Dynamic Features of Combustion”, Phil. Trans. R. Soc. London A, 315, 471–508 (1985).

    Article  Google Scholar 

  107. A.E. Lutz, “Numerical Study of Thermal Ignition”, Sandia Report, SAND 88-8228.UC4 (1988).

    Google Scholar 

  108. A.E. Lutz, R.J. Kee, J.A. Miller, H.A. Dwyer, A.K. Oppenheim, “Dynamic Effects of Auto-ignition Centers for Hydrogen and C-1,2-Hydrocarbon Fuels”, 22nd Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh (1988).

    Google Scholar 

  109. P. Dittrich, F. Wirbeleit, J. Willand, K. Binder, “Multi-Dimensional Modeling of the Effect of Injection Systems on DI Diesel Engine Combustion and NO-Formation”, SAE Paper 98FL-512 (1998).

    Google Scholar 

  110. P. Stapf, R.R. Maly, H.A. Dwyer, “A Group Combustion Model for Treating Reactive Sprays in I.C. Engines”, 27th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh (1998).

    Google Scholar 

  111. R.J. Kee, F.M. Rupley, J.A. Miller, “CHEMKIN II, A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics”, Sandia Report, SAND89-8009 (1990).

    Google Scholar 

  112. C.K. Westbrook, F.L. Dryer, “Chemical Kinetic Modeling of Hydrocarbon Combustion”, Prog. Energy Combust. Sci., 10, 1–57 (1984).

    Article  Google Scholar 

  113. M. Nehse, J. Warnatz, C. Chevalier, “Kinetic Modeling of the Oxidation of Large Aliphatic Hydrocarbons”, 26th Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh (1996).

    Google Scholar 

  114. R.R. Maly, P. Stapf, G. König, “Neue Ansätze zur Modellierung der Rubildung”, in Dieselmotorentechnik 98, ed. by U. Essers, 553, Technische Akademie Essingen (1998).

    Google Scholar 

  115. R. R. Maly, P. Stapf, G. König, “Progress in Soot Modeling for Engines”, Key Note Paper, Proc. COMODIA’98, JSME, Tokyo, 25–34 (1998).

    Google Scholar 

  116. B. Krutzsch, G. Wenninger, M. Weibel, P. Stapf, A. Funk, D.E. Webster, E. Chaize, B. Kasemo, J. Martens, A. Kiennemann, “Reduction of NO_x in Lean Exhaust by Selective NOx-Recirculation (SNR-Technique) Part I: System and Decomposition Process”, SAE Paper 982592 (1998).

    Google Scholar 

  117. N. Fekete, R. Kemmler, D. Voigtländer, B. Krutzsch, E. Zimmer, G. Wenninger, W. Strehlau, J.A.A. van den Tillaart, J. Leyrer, E.S. Lox, W. Müller, “Evaluation of NOx Storage Catalysts for Lean Burn Gasoline Fueled Passenger Cars”, SAE Paper 970746 (1997).

    Google Scholar 

  118. R.R. Maly, “Progress in Combustion Research”, IMechE Prestige Lecture, IMechE, London (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf R. Maly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maly, R.R., Herweg, R. (2008). Spark Ignition and Combustion in Four-Stroke Gasoline Engines. In: Arcoumanis, C., Kamimoto, T. (eds) Flow and Combustion in Reciprocating Engines. Experimental Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68901-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68901-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64142-1

  • Online ISBN: 978-3-540-68901-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics