Skip to main content

A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods for Solving the Minimum Graph Bisection Problem

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5035))

Abstract

Semidefinite relaxations are known to deliver good approximations for combinatorial optimization problems like graph bisection. Using the spectral bundle method it is possible to exploit structural properties of the underlying problem and to apply, even to sparse large scale instances, cutting plane methods, probably the most successful technique in linear programming. We set up a common branch-and-cut framework for linear and semidefinite relaxations of the minimum graph bisection problem. It incorporates separation algorithms for valid inequalities presented in the recent study [2] of the facial structure of the associated polytope. Extensive numerical experiments show that the semidefinite branch-and-cut approach outperforms the classical simplex approach on a clear majority of the sparse large scale test instances. On instances from compiler design the simplex approach is faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achterberg, T.: Constraint integer programming. PhD-Thesis, PhD-Thesis, Technische Universität Berlin, Berlin (2007)

    Google Scholar 

  2. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: On the bisection cut polytope. Technical Report, Chemnitz/Darmstadt University of Technology (2007)

    Google Scholar 

  3. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Prog. 36, 157–173 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conforti, M., Rao, M.R., Sassano, A.: The equipartition polytope I, II. Math. Prog. 49, 49–70 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Souza, C.C.: The graph equipartition problem: Optimal solutions, extensions and applications. PhD-Thesis, Université Catholique de Louvain, Belgium (1993)

    Google Scholar 

  6. Deza, M., Laurent, M.: Geometry of Cuts and Metrics Algorithms and Combinatorics, vol. 15. Springer, Heidelberg (1997)

    Google Scholar 

  7. Eisenblätter, A.: Frequency Assignment in GSM Networks. PhD-Thesis, Technische Universität Berlin, Berlin (2001)

    Google Scholar 

  8. Ferreira, C.E., Martin, A., de Souza, C.C., Weismantel, R., Wolsey, L.A.: Formulations and valid inequalities for the node capacitated graph partitioning problem. Math. Prog. 74, 247–266 (1996)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  10. Gilbert, J.R., Tarjan, R.E.: The analysis of a nested dissection algorithm. Numer. Math. 50, 377–404 (1979)

    Article  MathSciNet  Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. In: Grötschel, M. (ed.) The Sharpest Cut. MPS-SIAM Series on Optimization, pp. 233–256 (2004)

    Google Scholar 

  13. Helmberg, C., Kiwiel, K.C.: A Spectral Bundle Method with Bounds. Math. Prog. 93, 173–194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3), 673–696 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laurent, M., de Souza, C.C.: Some new classes of facets for the equicut polytope. Discr. App. Math. 62, 167–191 (1995)

    Article  MATH  Google Scholar 

  16. Johnson, E., Mehrotra, A., Nemhauser, G.: Min-cut clustering. Math. Prog. 62, 133–152 (1993)

    Article  MathSciNet  Google Scholar 

  17. Jünger, M., Martin, A., Reinelt, G., Weismantel, R.: Quadratic 0/1 optimization and a decomposition approach for the placement of electronic circuits. Math. Prog. B 63(3), 257–279 (1994)

    Article  Google Scholar 

  18. Lengauer, T.: Combinatorial algorithms for integrated circuit layout. John Wiley and Sons Ltd., Chichester (1990)

    MATH  Google Scholar 

  19. Poljak, S., Rendl, F.: Nonpolyhedral relaxations of graph-bisection problems. SIAM J. Optim. 5(3), 467–487 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rendl, F., Rinaldi, G., Wiegele, A.: A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxations. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 295–309. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Weismantel, R.: On the 0/1 Knapsack polytope. Math. Prog. 77, 49–68 (1997)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrea Lodi Alessandro Panconesi Giovanni Rinaldi

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A. (2008). A Comparative Study of Linear and Semidefinite Branch-and-Cut Methods for Solving the Minimum Graph Bisection Problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2008. Lecture Notes in Computer Science, vol 5035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68891-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68891-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68886-0

  • Online ISBN: 978-3-540-68891-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics